The first step of the Hubbert linearization consists of plotting the yearly production data as a fraction of the cumulative production on the vertical axis and the cumulative production on the horizontal axis. This representation exploits the linear property of the logistic differential equation: with
We can rewrite as the following: The above relation is a line equation in the P/Q versus Q plane. Consequently, a linear regression on the data points gives us an estimate of the line slope calculated by -k/URR and intercept from which we can derive the Hubbert curve parameters:
The k parameter is the intercept of the vertical axis.
The URR value is the intercept of the horizontal axis.
The geologist Kenneth S. Deffeyes applied this technique in 2005 to make a prediction about the peak of overall oil production at the end of the same year, which has since been found to be premature. He did not make a distinction between "conventional" and "non-conventional" oil produced by fracturing, aka tight oil, which has continued further growth in oil production. However, since 2005 conventional oil production has not grown anymore.
US oil production
The charts below gives an example of the application of the Hubbert Linearization technique in the case of the US Lower-48 oil production. The fit of a line using the data points from 1956 to 2005 gives a URR of 199 Gb and a logistic growth rate of 6%.
Norway oil production
The Norwegian Hubbert linearization estimates an URR = 30 Gb and a logistic growth rate of k = 17%.
Alternative techniques
Second Hubbert linearization
The Hubbert linearization principle can be extended to the first derivatives of the production rate by computing the derivative of : The left term, the rate of change of production per current production, is often called the decline rate. The decline curve is a line that starts at +k, crosses zero at URR/2 and ends at -k. Thus, we can derive the Hubbert curve parameters:
The growth parameter k is the intercept of the vertical axis.
The URR value is twice the intercept of the horizontal axis.
Hubbert parabola
This representation was proposed by Roberto Canogar and applied to the oil depletion problem. It is equation multiplied by Q. The parabola starts from the origin and passes through. Data points until t are used by the least squares fitting method to find an estimate for URR.
Logit transform
David Rutledge applied the logit transform for the analysis of coal production data, which often has a worse signal-to-noise ratio than the production data for hydrocarbons. The integrative nature of cumulation serves as a low pass, filtering noise effects. The production data is fitted to the logistic curve after transformation using e as normalized exhaustion parameter going from 0 to 1. The value of URR is varied so that the linearized logit gives a best fit with a maximal coefficient of determination.