Hypertranscendental function


A hypertranscendental function or transcendentally transcendental function is an analytic function which is not the solution of an algebraic differential equation with coefficients in Z and with algebraic initial conditions. All hypertranscendental functions are transcendental functions.

History

The term 'transcendentally transcendental' was introduced by E. H. Moore in 1896; the term 'hypertranscendental' was introduced by D. D. Morduhai-Boltovskoi in 1914.

Definition

One standard definition defines solutions of differential equations of the form
where is a polynomial with constant coefficients, as algebraically transcendental or differentially algebraic. Transcendental functions which are not algebraically transcendental are transcendentally transcendental. Hölder's theorem shows that the gamma function is in this category.
Hypertranscendental functions usually arise as the solutions to functional equations, for example the gamma function.

Examples

Hypertranscendental functions