IEEE 802.11ax
IEEE 802.11ax, marketed as Wi-Fi 6 by Wi-Fi Alliance, is a draft Wi-Fi specification standard, and the proposed successor to Wi-Fi 5.
The 802.11ax standard is expected to become an official IEEE specification in September 2020. It is designed to operate in license exempt bands between 1 and 6 GHz when they become available for 802.11 use. All Wi-Fi 6 devices work over the previously allocated 2.4 and 5 GHz bands. The Wi-Fi 6E designation is for products that also support the standard over 6 GHz.
Devices presented at CES 2018 claimed a combined 11 Gbit/s of theoretical data rates. For dense deployments, throughput speeds are 4× higher than IEEE 802.11ac, even though the nominal data rate is just 37% faster at most. Latency is also down 75%.
To improve spectrum efficient utilization, the new version introduces better power-control methods to avoid interference with neighboring networks, orthogonal frequency-division multiple access, higher order 1024-QAM, and up-link direction added with the down-link of MIMO and MU-MIMO to further increase throughput, as well as dependability improvements of power consumption and security protocols such as Target Wake Time and WPA3.
Rate set
NotesTechnical improvements
The 802.11ax amendment will bring several key improvements over 802.11ac. 802.11ax addresses frequency bands between 1 GHz and 6 GHz. Therefore, unlike 802.11ac, 802.11ax will also operate in the unlicensed 2.4 GHz band. To meet the goal of supporting dense 802.11 deployments, the following features have been approved.Feature | 802.11ac | 802.11ax | Comment |
OFDMA | Not available | Centrally controlled medium access with dynamic assignment of 26, 52, 106, 242, 484, or 996 tones per station. Each tone consists of a single subcarrier of 78.125 kHz bandwidth. Therefore, bandwidth occupied by a single OFDMA transmission is between 2.03125 MHz and ca. 80 MHz bandwidth. | OFDMA segregates the spectrum in time-frequency resource units. A central coordinating entity assigns RUs for reception or transmission to associated stations. Through the central scheduling of the RUs contention overhead can be avoided, which increases efficiency in scenarios of dense deployments. |
Multi-user MIMO | Available in Downlink direction | Available in Downlink and Uplink direction | With Downlink MU MIMO an AP may transmit concurrently to multiple stations and with Uplink MU MIMO an AP may simultaneously receive from multiple stations. Whereas OFDMA separates receivers to different RUs, with MU MIMO the devices are separated to different spatial streams. In 802.11ax, MU MIMO and OFDMA technologies can be used simultaneously. To enable uplink MU transmissions, the AP transmits a new control frame which contains scheduling information. Furthermore, Trigger also provides synchronization for an uplink transmission, since the transmission starts SIFS after the end of Trigger. |
Trigger-based Random Access | Not available | Allows performing UL OFDMA transmissions by stations which are not allocated RUs directly. | In Trigger frame, the AP specifies scheduling information about subsequent UL MU transmission. However, several RUs can be assigned for random access. Stations which are not assigned RUs directly can perform transmissions within RUs assigned for random access. To reduce collision probability, the 802.11ax amendment specifies special OFDMA back-off procedure. Random access is favorable for transmitting buffer status reports when the AP has no information about pending UL traffic at a station. |
Spatial frequency reuse | Not available | Coloring enables devices to differentiate transmissions in their own network from transmissions in neighboring networks. Adaptive Power and Sensitivity Thresholds allows dynamically adjusting transmit power and signal detection threshold to increase spatial reuse. | Without spatial reuse capabilities devices refuse transmitting concurrently to transmissions ongoing in other, neighboring networks. With coloring, a wireless transmission is marked at its very beginning helping surrounding devices to decide if a simultaneous use of the wireless medium is permissible or not. A station is allowed to consider the wireless medium as idle and start a new transmission even if the detected signal level from a neighboring network exceeds legacy signal detection threshold, provided that the transmit power for the new transmission is appropriately decreased. |
NAV | Single NAV | Two NAVs | In dense deployment scenarios, NAV value set by a frame originated from one network may be easily reset by a frame originated from another network, which leads to misbehavior and collisions. To avoid this, each 802.11ax station will maintain two separate NAVs — one NAV is modified by frames originated from a network the station is associated with, the other NAV is modified by frames originated from overlapped networks. |
Target Wake Time | Not available | TWT reduces power consumption and medium access contention. | TWT is a concept developed in 802.11ah. It allows devices to wake up at other periods than the beacon transmission period. Furthermore, the AP may group device to different TWT period thereby reducing the number of devices contending simultaneously for the wireless medium. |
Fragmentation | Static fragmentation | Dynamic fragmentation | With static fragmentation all fragments of a data packet are of equal size except for the last fragment. With dynamic fragmentation a device may fill available RUs of other opportunities to transmit up to the available maximum duration. Thus, dynamic fragmentation helps reduce overhead. |
Guard interval duration | 0.4 µs or 0.8 µs | 0.8 µs, 1.6 µs or 3.2 µs | Extended guard interval durations allow for better protection against signal delay spread as it occurs in outdoor environments. |
Symbol duration | 3.2 µs | 12.8 µs | Since the subcarrier spacing is reduced by a factor of 4, the OFDM symbol duration is increased by a factor of 4 as well. Extended symbol durations allow for increased efficiency. |
Products
Silicon
- On October 27, 2016, Quantenna announced the first 802.11ax silicon, the QSR10G-AX. The chipset is compliant with Draft 1.0 and supports eight 5 GHz streams and four 2.4 GHz streams. In January 2017 Quantenna added the QSR5G-AX to their portfolio with support for four streams in both bands. Both products are aimed at routers and access points.
- On February 13, 2017, Qualcomm announced their first 802.11ax silicon.
- * The IPQ8074 is a complete SoC with four Cortex-A53 cores.
- On August 15, 2017, Broadcom announced their 6th Generation of Wi-Fi products with 802.11ax support.
- * The BCM43684 and BCM43694 are 4×4 MIMO chips with full 802.11ax support,
- On December 11, 2017, Marvell announced 802.11ax chipsets consisting of 88W9068, 88W9064 and 88W9064S.
- On January 4, 2018, Intel Announces 802.11ax Chipsets for Faster Wi-Fi
- On February 21, 2018, Qualcomm announced the WCN3998, a 2x2 802.11ax chipset for smartphones and mobile devices.
- As of April 2018, Intel is working on an 802.11ax chipset for mobile devices, the Wireless-AX 22560 with Harrison Peak code-name.
- On October 23, 2018, Broadcom announced two new 2x2 802.11ax SOCs: the BCM6752 and BCM6755.
- On January 8, 2019, MediaTek announced their 802.11ax chips being 2x2 and 4x4
- On February 25, 2019, Qualcomm announced the , a 2x2 802.11ax/Bluetooth 5.1 combined chipset for mobile and computing devices
- On May 28, 2020, Qualcomm announced its first chips with support for Wi-Fi 6E, including chips for phones and routers.
Devices
- On March 8, 2019, Samsung released the Galaxy Fold and Galaxy S10 family supporting 802.11ax.
- On August 23, 2019, Samsung released the Galaxy Note 10 series supporting 802.11ax.
- On September 10, 2019, Apple announced the iPhone 11, iPhone 11 Pro and iPhone 11 Pro Max supporting 802.11ax.
- On 18 March 2020, Apple announced the iPad Pro supporting 802.11ax.
- The Huawei Mate Xs, Huawei P40, Oppo Reno3 5G, Oppo A91, Xiaomi Mi 10 5G, Xiaomi Black Shark 3, vivo iQOO 3 5G, ZTE nubia Red Magic 5G, Sony Xperia 1 II, LG V50 ThinQ 5G, and LG V60 ThinQ 5G all support 802.11ax.
Access points
- On September 12, 2017, Huawei announced their first 802.11ax access point. The AP7060DN uses 8×8 MIMO and is based on Qualcomm hardware.
- On January 25, 2018, Aerohive Networks announced the first family of 802.11ax access points. The AP630, AP650, and AP650X are based on Broadcom chipsets.
- On July 17, 2018, Ruckus Networks announced an IoT- and LTE-ready 802.11ax access point, also known as the R730. The R730 shipped in September 2018.
- On September, 2018 announced the launch of the industry's first tri-band 802.11ax wireless access point up to 10Gbit/s and on June 2019 released cost effective 802.11ax Access point up to 5.2Gbit/s.
- On November 13, 2018, Aruba Networks announced their first 802.11ax access points, the AP510 series.
- On January 22, 2019, Extreme Networks announced their first 802.11ax access points, the 500 series.
- On April 29, 2019, Cisco announced their first 802.11ax access point. The ax enabled access points are Catalyst 9115, Catalyst 9117, Catalyst 9120, Catalyst 9130, Meraki MR45 and MR55.
- On June 25, 2019, Juniper Networks, through their Mist Systems subsidiary, announced their Wi-Fi 6 compatible AP-43 as part of its AI-driven enterprise initiative.
Routers
- On August 30, 2017, Asus announced the first 802.11ax router. The RT-AX88U uses a Broadcom chipset, has 4×4 MIMO in both bands and achieves a maximum of 1148 Mbit/s on 2.4 GHz and 4804 Mbit/s on 5 GHz.
- On June 4, 2018, Asus launches the ROG Rapture GT-AX11000 : world’s first 10 Gbps SOHO-router.