Indoor positioning system


An indoor positioning system is a network of devices used to locate people or objects where GPS and other satellite technologies lack precision or fail entirely, such as inside multistory buildings, airports, alleys, parking garages, and underground locations.
A large variety of techniques and devices are used to provide indoor positioning ranging from reconfigured devices already deployed such as smartphones, WiFi and Bluetooth antennas, digital cameras, and clocks; to purpose built installations with relays and beacons strategically placed throughout a defined space. Lights, radio waves, magnetic fields, acoustic signals, and behavioral analytics are all used in IPS networks. IPS can achieve position accuracy of 2 cm, which is on par with RTK enabled GNSS receivers that can achieve 2 cm accuracy outdoors.
Indoor positioning systems use different technologies, including distance measurement to nearby anchor nodes, magnetic positioning, dead reckoning. They either actively locate mobile devices and tags or provide ambient location or environmental context for devices to get sensed.
The localized nature of an IPS has resulted in design fragmentation, with systems making use of various optical, radio, or even acoustic
technologies.
IPS has broad applications in commercial, military, retail, and inventory tracking industries. There are several commercial systems on the market, but no standards for an IPS system. Instead each installation is tailored to spatial dimensions, building materials, accuracy needs, and budget constraints.
For smoothing to compensate for stochastic errors there must be a sound method for reducing the error budget significantly. The system might include information from other systems to cope for physical ambiguity and to enable error compensation.
Detecting the device's orientation can be achieved either by detecting landmarks inside images taken in real time, or by using trilateration with beacons. There also exist technologies for detecting magnetometric information inside buildings or locations with steel structures or in iron ore mines.

Applicability and precision

Due to the signal attenuation caused by construction materials, the satellite based Global Positioning System loses significant power indoors affecting the required coverage for receivers by at least four satellites. In addition, the multiple reflections at surfaces cause multi-path propagation serving for uncontrollable errors. These very same effects are degrading all known solutions for indoor locating which uses electromagnetic waves from indoor transmitters to indoor receivers. A bundle of physical and mathematical methods are applied to compensate for these problems. Promising direction radio frequency positioning error correction opened by the use of alternative sources of navigational information, such as inertial measurement unit, monocular camera Simultaneous localization and mapping and WiFi SLAM. Integration of data from various navigation systems with different physical principles can increase the accuracy and robustness of the overall solution.
The U.S. Global Positioning System and other similar Global navigation satellite systems are generally not suitable to establish indoor locations, since microwaves will be attenuated and scattered by roofs, walls and other objects. However, in order to make positioning signals ubiquitous, integration between GPS and indoor positioning can be made.
Currently, GNSS receivers are becoming more and more sensitive due to increasing microchip processing power. High Sensitivity GNSS receivers are able to receive satellite signals in most indoor environments and attempts to determine the 3D position indoors have been successful. Besides increasing the sensitivity of the receivers, the technique of A-GPS is used, where the almanac and other information are transferred through a mobile phone.
However, proper coverage for the required four satellites to locate a receiver is not achieved with all current designs for indoor operations. Beyond, the average error budget for GNSS systems normally is much larger than the confinements, in which the locating shall be performed.

Types of usage

Locating and positioning

While most current IPS are able to detect the location of an object, they are so coarse that they cannot be used to detect the orientation or direction of an object.

Locating and tracking

One of the methods to thrive for sufficient operational suitability is "tracking". Whether a sequence of locations determined form a trajectory from the first to the most actual location. Statistical methods then serve for smoothing the locations determined in a track resembling the physical capabilities of the object to move. This smoothing must be applied, when a target moves and also for a resident target, to compensate erratic measures. Otherwise the single resident location or even the followed trajectory would compose of an itinerant sequence of jumps.

Identification and segregation

In most applications the population of targets is larger than just one. Hence the IPS must serve a proper specific identification for each observed target and must be capable to segregate and separate the targets individually within the group. An IPS must be able to identify the entities being tracked, despite the "non-interesting" neighbors. Depending on the design, either a sensor network must know from which tag it has received information, or a locating device must be able to identify the targets directly.

Wireless technologies

Any wireless technology can be used for locating. Many different systems take advantage of existing wireless infrastructure for indoor positioning. There are three primary system topology options for hardware and software configuration, network-based, terminal-based, and terminal-assisted. Positioning accuracy can be increased at the expense of wireless infrastructure equipment and installations.

Wi-Fi-based positioning system (WPS)

Wi-Fi positioning system is used where GPS is inadequate. The localization technique used for positioning with wireless access points is based on measuring the intensity of the received signal and the method of "fingerprinting". To increase the accuracy of fingerprinting methods, statistical post-processing techniques can be applied, to transform discrete set of "fingerprints" to a continious distribution of RSSI of each access point over entire location. Typical parameters useful to geolocate the Wi-Fi hotspot or wireless access point include the SSID and the MAC address of the access point. The accuracy depends on the number of positions that have been entered into the database. The possible signal fluctuations that may occur can increase errors and inaccuracies in the path of the user.

Bluetooth

Originally, Bluetooth was concerned about proximity, not about exact location.
Bluetooth was not intended to offer a pinned location like GPS, however is known as a geo-fence or micro-fence solution which makes it an indoor proximity solution, not an indoor positioning solution.
Micromapping and indoor mapping has been linked to Bluetooth and to the Bluetooth LE based iBeacon promoted by Apple Inc.. Large-scale indoor positioning system based on iBeacons has been implemented and applied in practice.
Bluetooth speaker position and home networks can be used for broad reference
As of Bluetooth 5.1, since angle to the antenna can be measured, it can be used to determine inside position accurate to centimeter level.

Choke point concepts

Simple concept of location indexing and presence reporting for tagged objects, uses known sensor identification only. This is usually the case with passive radio-frequency identification / NFC systems, which do not report the signal strengths and various distances of single tags or of a bulk of tags and do not renew any before known location coordinates of the sensor or current location of any tags. Operability of such approaches requires some narrow passage to prevent from passing by out of range.

Grid concepts

Instead of long range measurement, a dense network of low-range receivers may be arranged, e.g. in a grid pattern for economy, throughout the space being observed. Due to the low range, a tagged entity will be identified by only a few close, networked receivers. An identified tag must be within range of the identifying reader, allowing a rough approximation of the tag location. Advanced systems combine visual coverage with a camera grid with the wireless coverage for the rough location.

Long range sensor concepts

Most systems use a continuous physical measurement along with the identification data in one combined signal. Reach by these sensors mostly covers an entire floor, or an aisle or just a single room. Short reach solutions get applied with multiple sensors and overlapping reach.

Angle of arrival

is the angle from which a signal arrives at a receiver. AoA is usually determined by measuring the time difference of arrival between multiple antennas in a sensor array. In other receivers, it is determined by an array of highly directional sensors—the angle can be determined by which sensor received the signal. AoA is usually used with triangulation and a known base line to find the location relative to two anchor transmitters.

Time of arrival

is the amount of time a signal takes to propagate from transmitter to receiver. Because the signal propagation rate is constant and known the travel time of a signal can be used to directly calculate distance. Multiple measurements can be combined with trilateration and multilateration to find a location. This is the technique used by GPS. Systems which use ToA, generally require a complicated synchronization mechanism to maintain a reliable source of time for sensors.
The accuracy of the TOA based methods often suffers from massive multipath conditions in indoor localization, which is caused by the reflection and diffraction of the RF signal from objects in the environment. However, it is possible to reduce the effect of multipath by applying temporal or spatial sparsity based techniques.

Received signal strength indication

is a measurement of the power level received by sensor. Because radio waves propagate according to the inverse-square law, distance can be approximated based on the relationship between transmitted and received signal strength, as long as no other errors contribute to faulty results. The inside of buildings is not free space, so accuracy is significantly impacted by reflection and absorption from walls. Non-stationary objects such as doors, furniture, and people can pose an even greater problem, as they can affect the signal strength in dynamic, unpredictable ways.
A lot of systems use enhanced Wi-Fi infrastructure to provide location information. None of these systems serves for proper operation with any infrastructure as is. Unfortunately, Wi-Fi signal strength measurements are extremely noisy, so there is ongoing research focused on making more accurate systems by using statistics to filter out the inaccurate input data. Wi-Fi Positioning Systems are sometimes used outdoors as a supplement to GPS on mobile devices, where only few erratic reflections disturb the results.

Others wireless technologies

Non-radio technologies can be used for positioning without using the existing wireless infrastructure. This can provide increased accuracy at the expense of costly equipment and installations.

Magnetic positioning

can offer pedestrians with smartphones an indoor accuracy of 1–2 meters with 90% confidence level, without using the additional wireless infrastructure for positioning. Magnetic positioning is based on the iron inside buildings that create local variations in the Earth's magnetic field. Un-optimized compass chips inside smartphones can sense and record these magnetic variations to map indoor locations.

Inertial measurements

Pedestrian dead reckoning and other approaches for positioning of pedestrians propose an inertial measurement unit carried by the pedestrian either by measuring steps indirectly or in a foot mounted approach, sometimes referring to maps or other additional sensors to constrain the inherent sensor drift encountered with inertial navigation. The MEMS inertial sensors suffer from internal noises which result in cubically growing position error with time. To reduce the error growth in such devices a Kalman Filtering based approach is often used.
However, in order to make it capable to build map itself, the SLAM algorithm framework will be used.
Inertial measures generally cover the differentials of motion, hence the location gets determined with integrating and thus requires integration constants to provide results. The actual position estimation can be found as the maximum of a 2-d probability distribution which is recomputed at each step taking into account the noise model of all the sensors involved and the constraints posed by walls and furniture.
Based on the motions and users' walking behaviors, IPS is able to estimate users' locations by machine learning algorithms.

Positioning based on visual markers

A visual positioning system can determine the location of a camera-enabled mobile device by decoding location coordinates from visual markers. In such a system, markers are placed at specific locations throughout a venue, each marker encoding that location's coordinates: latitude, longitude and height off the floor. Measuring the visual angle from the device to the marker enables the device to estimate its own location coordinates in reference to the marker. Coordinates include latitude, longitude, level and altitude off the floor.

Location based on known visual features

A collection of successive snapshots from a mobile device's camera can build a database of images that is suitable for estimating location in a venue. Once the database is built, a mobile device moving through the venue can take snapshots that can be interpolated into the venue's database, yielding location coordinates. These coordinates can be used in conjunction with other location techniques for higher accuracy. Note that this can be a special case of sensor fusion where a camera plays the role of yet another sensor.

Mathematics

Once sensor data has been collected, an IPS tries to determine the location from which the received transmission was most likely collected. The data from a single sensor is generally ambiguous and must be resolved by a series of statistical procedures to combine several sensor input streams.

Empirical method

One way to determine position is to match the data from the unknown location with a large set of known locations using an algorithm such as k-nearest neighbor. This technique requires a comprehensive on-site survey and will be inaccurate with any significant change in the environment.

Mathematical modeling

Location will be calculated mathematically by approximating signal propagation and finding angles and / or distance. Inverse trigonometry will then be used to determine location:
Advanced systems combine more accurate physical models with statistical procedures:
The major consumer benefit of indoor positioning is the expansion of location-aware mobile computing indoors. As mobile devices become ubiquitous, contextual awareness for applications has become a priority for developers. Most applications currently rely on GPS, however, and function poorly indoors. Applications benefiting from indoor location include: