Inverse-chi-squared distribution


In probability and statistics, the inverse-chi-squared distribution is a continuous probability distribution of a positive-valued random variable. It is closely related to the chi-squared distribution. It arises in Bayesian inference, where it can be used as the prior and posterior distribution for an unknown variance of the normal distribution.

Definition

The inverse-chi-squared distribution is the probability distribution of a random variable whose multiplicative inverse has a chi-squared distribution. It is also often defined as the distribution of a random variable whose reciprocal divided by its degrees of freedom is a chi-squared distribution. That is, if has the chi-squared distribution with degrees of freedom, then according to the first definition, has the inverse-chi-squared distribution with degrees of freedom; while according to the second definition, has the inverse-chi-squared distribution with degrees of freedom. Information associated with the first definition is depicted on the right side of the page.
The first definition yields a probability density function given by
while the second definition yields the density function
In both cases, and is the degrees of freedom parameter. Further, is the gamma function. Both definitions are special cases of the scaled-inverse-chi-squared distribution. For the first definition the variance of the distribution is while for the second definition.

Related distributions