Inverted relief, inverted topography, or topographic inversion refers to landscape features that have reversed their elevation relative to other features. It most often occurs when low areas of a landscape become filled with lava or sediment that hardens into material that is more resistant to erosion than the material that surrounds it. Differential erosion then removes the less resistant surrounding material, leaving behind the younger resistant material, which may then appear as a ridge where previously there was a valley. Terms such as "inverted valley" or "inverted channel" are used to describe such features. Inverted relief has been observed on the surfaces of other planets as well as on Earth. For example, well-documented inverted topographies have been discovered on Mars.
Formation
Several processes can cause the floor of a depression to become more resistant to erosion than its surrounding slopes and uplands:
First, coarse-grained sediment, such as gravel, accumulates in the depression, i.e., a stream valley or lake basin. Next, wind erosion removes fine-grained sediments in areas adjacent to the depression. This leaves behind the more resistant coarse-grained sediments as a hill or ridge, while the channel switches to a lower lying area.
A fluvial valley might fill with volcanic material such as lava or welded tuff pouring into it. This would resist erosion while the surrounding surface is eroded away to create a ridge.
Cementation of underlying sediments by minerals dissolved in water may occur in a depression. On Earth, this often happens in stream valleys as the result of the formation of duricrusts, i.e., silcrete or ferricrete, by pedogenesis. Minerals for cementation can come from groundwater. It is thought that a low point like a valley focuses groundflow, so more water and cements move into it, and this results in a greater degree of cementation. Again, the cemented sediments would resist erosion while the surrounding terrain is eroded away to create a ridge or hill.
Inverted relief in the form of sinuous and meandering ridges, which are indicative of ancient, inverted fluvial channels, is argued to be evidence of water channels on the Martian surface in the past. An example is Miyamoto Crater, which was proposed in 2010 as a potential location to be searched for evidence of life on Mars. Other examples are shown in the photographs below.