Irregular moon


In astronomy, an irregular moon, irregular satellite or irregular natural satellite is a natural satellite following a distant, inclined, and often eccentric and retrograde orbit. They have been captured by their parent planet, unlike regular satellites, which formed in orbit around them. Irregular moons have a stable orbit, unlike temporary satellites which often have similarly irregular orbits but will eventually depart.
As of October 2019, 145 irregular moons are known, orbiting all four of the outer planets. The largest of each planet are Himalia of Jupiter, Phoebe of Saturn, Sycorax of Uranus, and Triton of Neptune. It is currently thought that the irregular satellites were captured from heliocentric orbits near their current locations, shortly after the formation of their parent planet. An alternative theory, that they originated further out in the Kuiper belt, is not supported by current observations.

Definition

There is no widely accepted precise definition of an irregular satellite. Informally, satellites are considered irregular if they are far enough from the planet that the precession of their orbital plane is primarily controlled by the Sun.
In practice, the satellite's semi-major axis is compared with the radius of the planet's Hill sphere,. Irregular satellites have semi-major axes greater than 0.05 with apoapses extending as far as to 0.65. The radius of the Hill sphere is given in the adjacent table.
Earth's Moon seems to be an exception: it is not usually listed as an irregular satellite even though its precession is primarily controlled by the Sun and its semi-major axis is greater than 0.05 of the radius of Earth's Hill Sphere.

Orbits

Current distribution

The orbits of the known irregular satellites are extremely diverse, but there are certain patterns. Retrograde orbits are far more common than prograde orbits. No satellites are known with orbital inclinations higher than 55°. In addition, some [|groupings] can be identified, in which one large satellite shares a similar orbit with a few smaller ones.
Given their distance from the planet, the orbits of the outer satellites are highly perturbed by the Sun and their orbital elements change widely over short intervals. The semi-major axis of Pasiphae, for example, changes as much as 1.5 Gm in two years, the inclination around 10°, and the eccentricity as much as 0.4 in 24 years.
Consequently, mean orbital elements are used to identify the groupings rather than osculating elements at the given date.

Origin

Irregular satellites have been captured from heliocentric orbits. For this to occur, at least one of three things needs to have happened:
After the capture, some of the satellites could break up leading to groupings of smaller moons following similar orbits. Resonances could further modify the orbits making these groupings less recognizable.

Long-term stability

The current orbits of the irregular moons are stable, in spite of substantial perturbations near the apocenter.
The cause of this stability in a number of irregulars is the fact that they orbit with a secular or Kozai resonance.
In addition, simulations indicate the following conclusions:
Increasing eccentricity results in smaller pericenters and large apocenters. The satellites enter the zone of the regular moons and are lost or ejected via collision and close encounters. Alternatively, the increasing perturbations by the Sun at the growing apocenters push them beyond the Hill sphere.
Retrograde satellites can be found further from the planet than prograde ones. Detailed numerical integrations have shown this asymmetry. The limits are a complicated function of the inclination and eccentricity, but in general, prograde orbits with semi-major axes up to 0.47 rH can be stable, whereas for retrograde orbits stability can extend out to 0.67 rH.
The boundary for the semimajor axis is surprisingly sharp for the prograde satellites. A satellite on a prograde, circular orbit placed at 0.5 rH would leave Jupiter in as little as forty years. The effect can be explained by so-called evection resonance. The apocenter of the satellite, where the planet's grip on the moon is at its weakest, gets locked in resonance with the position of the Sun. The effects of the perturbation accumulate at each passage pushing the satellite even further outwards.
The asymmetry between the prograde and retrograde satellites can be explained very intuitively by the Coriolis acceleration in the frame rotating with the planet. For the prograde satellites the acceleration points outward and for the retrograde it points inward, stabilising the satellite.

Temporary captures

The capture of an asteroid from a heliocentric orbit isn't always permanent. According to simulations, temporary satellites should be a common phenomenon. The only observed example is, which was a temporary satellite of Earth for nine months in 2006 and 2007.

Physical characteristics

Size

Given their greater distance from Earth, the known irregular satellites of Uranus and Neptune are larger than those of Jupiter and Saturn; smaller ones probably exist but have not yet been observed. However, with this observational bias in mind, the size distribution is similar for all four giant planets.
Typically, the relation expressing the number of objects of the diameter smaller or equal to is approximated by a power law:
A shallow power law is observed for sizes 10 to 100 km but steeper for objects smaller than 10 km.
For comparison, the distribution of Kuiper belt objects is much steeper, i.e. for one object of 1000 km there are a thousand objects with a diameter of 100 km. The size distribution provides insights into the possible origin.
For every object of 100 km, ten objects of 10 km can be found.

For one object of 10 km, some 140 objects of 1 km can be found.

Colours

The colours of irregular satellites can be studied via colour indices: simple measures of differences of the apparent magnitude of an object through blue, visible i.e. green-yellow, and red filters. The observed colours of the irregular satellites vary from neutral to reddish.
albedoneutralreddishred
lowC 3–8%P 2–6%D 2–5%
mediumM 10–18%A 13–35%
highE 25–60%

Each planet's system displays slightly different characteristics. Jupiter's irregulars are grey to slightly red, consistent with C, P and D-type asteroids. Some groups of satellites are observed to display similar colours. Saturn's irregulars are slightly redder than those of Jupiter.
The large Uranian irregular satellites are light red, whereas the smaller Prospero and Setebos are grey, as are the Neptunian satellites Nereid and Halimede.

Spectra

With the current resolution, the visible and near-infrared spectra of most satellites appear featureless. So far, water ice has been inferred on Phoebe and Nereid and features attributed to aqueous alteration were found on Himalia.

Rotation

Regular satellites are usually tidally locked. In contrast, tidal forces on the irregular satellites are negligible given their distance from the planet, and rotation periods in the range of only ten hours have been measured for the biggest moons Himalia, Phoebe, Sycorax, and Nereid. Such rotation rates are in the same range that is typical for asteroids.

Families with a common origin

Some irregular satellites appear to orbit in 'groups', in which several satellites share similar orbits. The leading theory is that these objects constitute collisional families, parts of a larger body that broke up.

Dynamic groupings

Simple collision models can be used to estimate the possible dispersion of the orbital parameters given a velocity impulse Δv. Applying these models to the known orbital parameters makes it possible to estimate the Δv necessary to create the observed dispersion. A Δv of tens of meters per seconds could result from a break-up. Dynamical groupings of irregular satellites can be identified using these criteria and the likelihood of the common origin from a break-up evaluated.
When the dispersion of the orbits is too wide
When the colours and spectra of the satellites are known, the homogeneity of these data for all the members of a given grouping is a substantial argument for a common origin. However, lack of precision in the available data often makes it difficult to draw statistically significant conclusions. In addition, the observed colours are not necessarily representative of the bulk composition of the satellite.

Observed groupings

Irregular satellites of Jupiter

Typically, the following groupings are listed
Sinope, sometimes included into the Pasiphae group, is red and given the difference in inclination, it could be captured independently.
Pasiphae and Sinope are also trapped in secular resonances with Jupiter.

Irregular satellites of Saturn

The following groupings are commonly listed for Saturn's satellites:
Planetrmin
Jupiter1.5 km
Saturn3 km
Uranus7 km
Neptune16 km

According to current knowledge, the number of irregular satellites orbiting Uranus and Neptune is smaller than that of Jupiter and Saturn. However, it is thought that this is simply a result of observational difficulties due to the greater distance of Uranus and Neptune. The table at right shows the minimum radius of satellites that can be detected with current technology, assuming an albedo of 0.04; thus, there are almost certainly small Uranian and Neptunian moons that cannot yet be seen.
Due to the smaller numbers, statistically significant conclusions about the groupings are difficult. A single origin for the retrograde irregulars of Uranus seems unlikely given a dispersion of the orbital parameters that would require high impulse, implying a large diameter of the impactor, which is incompatible in turn with the size distribution of the fragments. Instead, the existence of two groupings has been speculated:
These two groups are distinct in their distance from Uranus and in their eccentricity.
However, these groupings are not directly supported by the observed colours: Caliban and Sycorax appear light red, whereas the smaller moons are grey.
For Neptune, a possible common origin of Psamathe and Neso has been noted. Given the similar colours, it was also suggested that Halimede could be a fragment of Nereid. The two satellites have had a very high probability of collision over the age of the solar system.

Exploration

To date, the only irregular satellites to have been visited by a spacecraft are Triton and Phoebe, the largest of Neptune's and Saturn's irregulars respectively. Triton was imaged by Voyager 2 in 1989 and Phoebe by the Cassini probe in 2004. Cassini also captured a distant, low-resolution image of Jupiter's Himalia in 2000. There are no spacecraft planned to visit any irregular satellites in the future.