Jointly proposed by Hughes and Boeing as a heavy-lift rocket, using propulsion systems and equipment built for the Saturn V rocket and placed in storage at the end of the Apollo program, as well as Space Shuttle components, Jarvis was intended to be capable of launching multiple GPS satellites, major components of the planned Space Station Freedom and commercial satellites. The rocket was named after Hughes employee and NASA mission specialist Gregory Jarvis, who died in the Space Shuttle Challenger disaster in January 1986. Submitted as part of the Advanced Launch System studies jointly conducted by the United States Air Force and NASA for a new heavy-lift rocket system capable of substituting for the Space Shuttle and expanding upon its capabilities, Jarvis was planned as a three-stage rocket capable of launching a payload of up to to low earth orbit, or to geosynchronous orbit; the rocket was projected to cost under $300 million USD per launch; some estimates had a per-launch cost of the Jarvis vehicle at a cost as low as $150 million each, with $1 billion being cited as the projected development cost of the rocket system. The first stage of the Jarvis vehicle was designed to use two Rocketdyne F-1 engines, powered by RP-1rocket fuel and liquid oxygen ; these were the same engines used by the Saturn V's first stage. The second stage would use a single Rocketdyne J-2 LOX/liquid hydrogen engine, while the third stage was intended to utilise eight Marquardt R-4Dreaction control system thrusters, fueled by a hypergolic mix of nitrogen tetroxide and monomethylhydrazine, to provide final boost, and to allow for the deployment of multiple payloads into different orbits. Jarvis was designed to be capable of carrying payloads of up to in diameter; as many as six satellites could be carried on a single rocket, and it was suggested that the Global Positioning System constellation be deployed in this manner. While the Hughes proposal for the "Jarvis" would have been powered by a pair of Saturn V F-1 engines, when Boeing joined the proposal they quickly shifted the proposal toward a Shuttle-derived in-line design consisting of an External Tank powered by a single aft-mounted Space Shuttle Main Engine augmented by a pair of Solid Rocket Boosters. This Revised Jarvis would be able to lift to LEO. Although Hughes received an Air Force contract to study the Jarvis vehicle, the Jarvis failed to meet the Air Force's requirements for the ALS, being too large in size compared to the specification. In 1986, Hughes stated that the rocket could be operational by the 1990s, with launches beginning two years after project go-ahead; however the U.S. Air Force rejected the Hughes-Boeing proposal. Consideration was given to continuing the Jarvis project as a private venture, and the Jarvis was mentioned as meeting the requirements for a launch vehicle to be used in the establishment of a lunar base in a 1992 conference on the subject, however nothing further came of the proposal, while the entire Advanced Launch System development effort was scaled back into the National Launch System before being cancelled in 1992.