Jordan curve theorem
In topology, a Jordan curve, sometimes called a plane simple closed curve, is a non-self-intersecting continuous loop in the plane. The Jordan curve theorem asserts that every Jordan curve divides the plane into an "interior" region bounded by the curve and an "exterior" region containing all of the nearby and far away exterior points, so that every continuous path connecting a point of one region to a point of the other intersects with that loop somewhere. While the statement of this theorem seems to be intuitively obvious, it takes some ingenuity to prove it by elementary means. "Although the JCT is one of the best known topological theorems, there are many, even among professional mathematicians, who have never read a proof of it.". More transparent proofs rely on the mathematical machinery of algebraic topology, and these lead to generalizations to higher-dimensional spaces.
The Jordan curve theorem is named after the mathematician Camille Jordan, who found its first proof. For decades, mathematicians generally thought that this proof was flawed and that the first rigorous proof was carried out by Oswald Veblen. However, this notion has been overturned by Thomas C. Hales and others.
Definitions and the statement of the Jordan theorem
A Jordan curve or a simple closed curve in the plane R2 is the image C of an injective continuous map of a circle into the plane, φ: S1 → R2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval into the plane. It is a plane curve that is not necessarily smooth nor algebraic.Alternatively, a Jordan curve is the image of a continuous map φ: → R2 such that φ = φ is injective. The first two conditions say that C is a continuous loop, whereas the last condition stipulates that C has no self-intersection points.
With these definitions, the Jordan curve theorem can be stated as follows:
Let C be a Jordan curve in the plane R2. Then its complement, R2 \ C, consists of exactly two connected components. One of these components is bounded and the other is unbounded, and the curve C is the boundary of each component.
In contrast, the complement of a Jordan arc in the plane is connected.
Proof and generalizations
The Jordan curve theorem was independently generalized to higher dimensions by H. Lebesgue and L.E.J. Brouwer in 1911, resulting in the Jordan–Brouwer separation theorem.
Let X be an n-dimensional topological sphere in the -dimensional Euclidean space Rn+1, i.e. the image of an injective continuous mapping of the n-sphere Sn into Rn+1. Then the complement Y of X in Rn+1 consists of exactly two connected components. One of these components is bounded and the other is unbounded. The set X is their common boundary.
The proof uses homology theory. It is first established that, more generally, if X is homeomorphic to the k-sphere, then the reduced integral homology groups of Y = Rn+1 \ X are as follows:
This is proved by induction in k using the Mayer–Vietoris sequence. When n = k, the zeroth reduced homology of Y has rank 1, which means that Y has 2 connected components, and with a bit of extra work, one shows that their common boundary is X. A further generalization was found by J. W. Alexander, who established the Alexander duality between the reduced homology of a compact subset X of Rn+1 and the reduced cohomology of its complement. If X is an n-dimensional compact connected submanifold of Rn+1 without boundary, its complement has 2 connected components.
There is a strengthening of the Jordan curve theorem, called the Jordan–Schönflies theorem, which states that the interior and the exterior planar regions determined by a Jordan curve in R2 are homeomorphic to the interior and exterior of the unit disk. In particular, for any point P in the interior region and a point A on the Jordan curve, there exists a Jordan arc connecting P with A and, with the exception of the endpoint A, completely lying in the interior region. An alternative and equivalent formulation of the Jordan–Schönflies theorem asserts that any Jordan curve φ: S1 → R2, where S1 is viewed as the unit circle in the plane, can be extended to a homeomorphism ψ: R2 → R2 of the plane. Unlike Lebesgue’s and Brouwer's generalization of the Jordan curve theorem, this statement becomes false in higher dimensions: while the exterior of the unit ball in R3 is simply connected, because it retracts onto the unit sphere, the Alexander horned sphere is a subset of R3 homeomorphic to a sphere, but so twisted in space that the unbounded component of its complement in R3 is not simply connected, and hence not homeomorphic to the exterior of the unit ball.
History and further proofs
The statement of the Jordan curve theorem may seem obvious at first, but it is a rather difficult theorem to prove.It is easy to establish this result for polygons, but the problem came in generalizing it to all kinds of badly behaved curves, which include nowhere differentiable curves, such as the Koch snowflake and other fractal curves, or even a Jordan curve of positive area constructed by.
The first proof of this theorem was given by Camille Jordan in his lectures on real analysis, and was published in his book Cours d'analyse de l'École Polytechnique. There is some controversy about whether Jordan's proof was complete: the majority of commenters on it have claimed that the first complete proof was given later by Oswald Veblen, who said the following about Jordan's proof:
However, Thomas C. Hales wrote:
Hales also pointed out that the special case of simple polygons is not only an easy exercise, but was not really used by Jordan anyway, and quoted Michael Reeken as saying:
Earlier, Jordan's proof and another early proof by Charles Jean de la Vallée Poussin had already been critically analyzed and completed by Schoenflies.
Due to the importance of the Jordan curve theorem in low-dimensional topology and complex analysis, it received much attention from prominent mathematicians of the first half of the 20th century. Various proofs of the theorem and its generalizations were constructed by J. W. Alexander, Louis Antoine, Ludwig Bieberbach, Luitzen Brouwer, Arnaud Denjoy, Friedrich Hartogs, Béla Kerékjártó, Alfred Pringsheim, and Arthur Moritz Schoenflies.
New elementary proofs of the Jordan curve theorem, as well as simplifications of the earlier proofs, continue to be carried out.
- Elementary proofs were presented by and.
- A proof using non-standard analysis by.
- A proof using constructive mathematics by .
- A proof using the Brouwer fixed point theorem by.
- A proof using non-planarity of the complete bipartite graph K3,3 was given by.
The first formal proof of the Jordan curve theorem was created by in the HOL Light system, in January 2005, and contained about 60,000 lines. Another rigorous 6,500-line formal proof was produced in 2005 by an international team of mathematicians using the Mizar system. Both the Mizar and the HOL Light proof rely on libraries of previously proved theorems, so these two sizes are not comparable. showed that the Jordan curve theorem is equivalent in proof-theoretic strength to the weak König's lemma.