A vortex street will form only at a certain range of flow velocities, specified by a range of Reynolds numbers, typically above a limiting Re value of about 90. The Reynolds number for a flow is a measure of the ratio of inertial to viscous forces in the flow of a fluid around a body or in a channel, and may be defined as a nondimensional parameter of the global speed of the whole fluid flow: where:
= the free stream flow speed, which is the original global flow parameter, i.e. the target to be non-dimensionalised.
For common flows, the kinematic viscosity is everywhere uniform over all the flow field and constant in time, so there is no choice on the viscosity parameter, which becomes naturally the kinematic viscosity of the fluid being considered at the temperature being considered. On the other hand, the reference length is always an arbitrary parameter, so particular attention should be put when comparing flows around different obstacles or in channels of different shapes: the global Reynolds numbers should be referred to the same reference length. This is actually the reason for which most precise sources for airfoil and channel flow data specify the reference length at a pedix to the Reynolds number. The reference length can vary depending on the analysis to be performed: for a body with circle sections such as circular cylinders or spheres, one usually chooses the diameter; for an airfoil, a generic non-circular cylinder or a bluff body or a revolution body like a fuselage or a submarine, it is usually the profile chord or the profile thickness, or some other given widths that are in fact stable design inputs; for flow channels usually the hydraulic diameter about which the fluid is flowing. For an aerodynamic profile the reference length depends on the analysis. In fact, the profile chord is usually chosen as the reference length also for aerodynamic coefficient for wing sections and thin profiles in which the primary target is to maximize the lift coefficient or the lift/drag ratio. On the other hand, for fairings and struts the given parameter is usually the dimension of internal structure to be streamlined, and the main target is to minimize the drag coefficient or the drag/lift ratio. The main design parameter which becomes naturally also a reference length is therefore the profile thickness, rather than the profile chord. The range of Re values will vary with the size and shape of the body from which the eddies are being shed, as well as with the kinematic viscosity of the fluid. Over a large Red range eddies are shed continuously from each side of the circle boundary, forming rows of vortices in its wake. The alternation leads to the core of a vortex in one row being opposite the point midway between two vortex cores in the other row, giving rise to the distinctive pattern shown in the picture. Ultimately, the energy of the vortices is consumed by viscosity as they move further down stream, and the regular pattern disappears. When a single vortex is shed, an asymmetrical flow pattern forms around the body and changes the pressure distribution. This means that the alternate shedding of vortices can create periodic lateral forces on the body in question, causing it to vibrate. If the vortex shedding frequency is similar to the natural frequency of a body or structure, it causes resonance. It is this forced vibration that, at the correct frequency, causes suspended telephone or power lines to "sing" and the antenna on a car to vibrate more strongly at certain speeds.
In meteorology
The flow of atmospheric air over obstacles such as islands or isolated mountains sometimes gives birth to von Kármán vortex streets. When a cloud layer is present at the relevant altitude, the streets become visible. Such cloud layer vortex streets have been photographed from satellites. The vortex street can reach over 400 km from the obstacle and the diameter of the vortices are normally 20-40 km.
Engineering problems
In low turbulence, tall buildings can produce a Kármán street, so long as the structure is uniform along its height. In urban areas where there are many other tall structures nearby, the turbulence produced by these prevents the formation of coherent vortices. Periodic crosswind forces set up by vortices along object's sides can be highly undesirable, and hence it is important for engineers to account for the possible effects of vortex shedding when designing a wide range of structures, from submarine periscopes to industrial chimneys and skyscrapers. In order to prevent the unwanted vibration of such cylindrical bodies, a longitudinal fin can be fitted on the downstream side, which, provided it is longer than the diameter of the cylinder, will prevent the eddies from interacting, and consequently they remain attached. Obviously, for a tall building or mast, the relative wind could come from any direction. For this reason, helical projections resembling large screw threads are sometimes placed at the top, which effectively create asymmetric three-dimensional flow, thereby discouraging the alternate shedding of vortices; this is also found in some car antennas. Another countermeasure with tall buildings is using variation in the diameter with height, such as tapering - that prevents the entire building being driven at the same frequency. Even more serious instability can be created in concrete cooling towers, for example, especially when built together in clusters. Vortex shedding caused the collapse of three towers at Ferrybridge Power Station C in 1965 during high winds. The failure of the original Tacoma Narrows Bridge was originally attributed to excessive vibration due to vortex shedding, but was actually caused by aeroelastic flutter. Kármán turbulence is also a problem for airplanes, especially when landing.
Formula
This formula will generally hold true for the range 40 < Red < 150: where:
Although named after Theodore von Kármán, he acknowledged that the vortex street had been studied earlier by Mallock and Bénard. Kármán tells the story in his book Aerodynamics: