Kite control systems


, kite mooring, and kite applications result in a wide variety of kite control systems. Contemporary manufacturers, kite athletes, kite pilots, scientists, and engineers are expanding the possibilities.

Single-line kite control systems

High-altitude attempt single-line control systems

On-board angle-of-attack mechanisms were used in 2000 altitude record-making flight; the operators' designed adjuster limited kite line tension to not more than 100 pounds by altering the angle of attack of the kite's wing body. The kite's line had a control: line payout meter that did not function in the record-setting flight. However, some special tether line lower end used some bungee and pulley arrangements to lower the impact of gusts on the long tether. Control of a kite includes how other aircraft sees the kite system; the team placed a radio beacon on the kite; for sight visibility, strobe lights were hung from the kite's nose. Control via use of reels and pulleys become critical when tension is high; the team had to repair and replace parts during the flight session.

Auxiliary control

Auxiliary devices have been invented and used for controlling single-line kites. Devices on board the kite's wing can react to the kite-line's tension or to the kite's angle of attack with the ambient stream in which the kite is flying. Special reel devices allow kite-line length and tension control. Moving the kite's line lower end left or right or windward or anti-windward forms part of the control system of single-line kites. Devices at the kite's bridle can be set to alter the relative lengths of sub-bridle lines in order to set the attitude of the kite so that the kite flies at a certain position of the potential positions; this can be done for one setting while the kite is readied for flight; but Kenneth C. Howard invited a device that can be operated on single-line kites during the flight session for variable settings:

Fighter-kite control systems

The traditional fighter kiting with single-line control dominates kite fighting while multi-line kite fighting is yet a minor activity. The human operator of the single line aims to master movements in order to have the unstable kite temporarily move in one direction or another. The intents of the controls are offensive and defensive; escape from an attack or position for an attack. The building of the kite so that motions by the kite's human operator or pilot allow a temporary limited stability takes special care.

Historical kite control systems

;Wright Brothers
;George A. Spratt triangle control frame
;Paresev
;Blue-Hill Observatory
A piano-wire based kite control system.
;Barry Hill Palmer

Medium-length-tethered power kites

Power kites are controlled by 2 to 5 lines. The simplest systems provide steering by pulling either end of the kite. More lines can provide different functions. These are:
The lines attach to different controllers:
;Rings or wrist loops
;Two-line bars
;Three-line bars
;Four-line bars
;Five-line bars
;Handles

Control of high-altitude electricity-generating wind-power kite systems

Human control of high altitude wind power systems is typically accomplished through servo mechanisms, as the tether tensions are too great for direct manual operation.
There are a number of patents in this area:
Other concepts include:
See main article kite rigs.
Kite rigs are systems for propelling a vehicle, such as a boat, buggy, or a vehicle with snow and ice runners. They may be as simple as a person flying a kite while standing on a specialized skateboard, or be complex systems fixed to the vehicle with powered and automated controls. They differ from conventional sails in that they are flown from lines, not supported by masts.

Commercial transport propulsion

Ship-pulling kites run to hundreds of square meters of area and require a special attachment points, a launch and recovery system, and fly-by-wire controls.
The SkySails ship propulsion system consists of a large foil kite, an electronic control system for the kite, and an automatic system to retract the kite.
The kite, while over ten times larger, bears similarities to the arc kites used in kitesurfing. However, the kite is an inflatable rather than a ram-air kite. Additionally, a control pod is used rather than direct tension on multiple kite control lines; only one line runs the full distance from kite to ship, with the bridle lines running from kite to control pod. Power to the pod is provided by cables embedded in the line; the same line also carries commands to the control pod from the ship.
The kite is launched and recovered by an animated mast or arm, which grips the kite by its leading edge. The mast also inflates and deflates the kite. When not in use, mast and deflated kite fold away.

Target-kites

The term target kite generally refers to the war-time kites used for shipboard anti-aircraft gunnery practice. These were the invention of Paul Garber, doing war work while on leave from the Smithsonian.
The kites were ordinary two-spar Eddy style kites with a height of about five feet. The sail was sky blue with the profile of a Japanese Zero or German aircraft painted in black. Attached at the lower end of the vertical spar is a small rudder, much like a boat's rudder. The rudder is controlled by two kite lines, which are also used to fly the kite. The two lines come down to earth and terminate at an either a flying bar or a special two-spool reel which incorporated a ratchet mechanism to assist in equalizing line length. The spool was in the center of a wooden bar which held the lines a fixed distance apart.

Indoor

A wand or pole with a string on the end is often used to lead indoor kites around.

Hang-gliders

Unpowered short-tethered hang-gliders

Unlike the long-lined power kites used in extreme kiting sport, the focus in this section is the short-lined framed large kite. The kite line or "hang line" for best controlling the flight of the hang glider kite needs to be carefully lengthed; then the line frequently splits to two, three, or four main tethers that connect to the hung kite operator's or pilot's harness. Mike Meier, respected kite glider author wrote How To Get The Right Hang Height NASA used mass-shifting in the Paresev hung-pilot aircraft with a stiffened-frame kite; the hang tether was also stiffened; differently, in sport hang gliding kite systems using the short hang line, the hang loop or first section of the hanging kite line is a flexible webbing; then the main lines to the harness are cords and sometimes webbing that are flexible. Control of the attitude of the kite's wing is achieved frequently by the pilot's grabbing the kite's stiffened airframe part called the control frame and pushing or pulling the kite's airframe left or right or forward and aft in various combinations; this control system is most commonly called "weight-shifting" although mechanically the situation is altering positions of mass to alter the center of gravity of the entire system relative to the aerodynamic center of pressure in order to effect leveraging moments to control the flight.
The place on the kite airframe where the tether is tied is very important as in all kites; such connection or bridling takes into consideration the aerodynamic center of pressure and the system's center of gravity. A key article by Mike Meier Pitch Stability & Center of Mass Location by Mike Meier focuses on this concern of control.
While flying the kite hang glider, there are times during flight instruction that instructors will have the student fully release from holding the triangle control frame and simply and only hang. The hanging student experiences that the properly bridled and trimmed wing will fly stably. However, since gusts occur, the student learns that hands-off flying is not the normal status—rather the kite pilot almost always is handling the control frame. Light bar pressure.

Powered short-tethered hang-gliders

Here the unpowered kite is tethered to a pilot who arranges to have a harness to which is attached a thrusting prime moving engine or motor; the total system is a while the kite itself remains unpowered. The control system includes the control system of the similar system where the pilot is not thrusted by a harnessed prime moving engine or motor, however in controlling flight, adjustments for center of mass are respected. Further, while the pilot's thrust is on, the pilot positions so that the kite's kite line is angled so tugging of the wing is accomplished in the familiar kiting manner where the kite line begins upwind and angles upward downwind.

Under tow by airplane

Under static-line tow

Here the tug kite line stays the same length during the kiting operation. Here the ground vehicle driver has special control duties; the kited hang glider person controls the kite in some ways different from other tow methods; careful distinctions are learned in professional instruction. Controlling things when unexpected events occur is a large part of instructions.

Under non-static-line tow

The complex control system includes the operator of the winch. The length of line starts long and then gets shorter as the winch reels the tug line; this alters the control decisions by the kited hang glider pilot. Instruction for controls is available for new winch operators and hang glider pilots who want to be so kited. Distinguish this method from static-line. The control system for the shortening-the-tug-line method of kiting is different.

Under bungee-line launch

Bungee launch control systems for kited hang gliders has its own special details. The tug kite line is very elastic; when tensed, the line is long; during use for launch, the kite line shortens. Controlling the kite's wing attitudes is up to the pilot who frequently is hung from a short kite line while controlling a triangle control frame or other airframe part or even aerodynamic surface controls. Professional instruction is highly recommended. Inelastic portion of the bungee assembly is used to help guard against what can happen if the bungee breaks and snaps back toward the pilot; a tug-line parachute can be used to lower the speed that the released bungee will fall. Bungee launch is used most frequently for launch off slopes when free-foot-launch is not easy, or for flatland short-flight demonstrations.

Paragliders

The non-stiffened Francis Rogallo parawing, the Domina Jalbert founded parafoil wing, or other modified fully flexible wings do not lend themselves to a mounting of a prime moving engine or motor to them; rather the kiting lines to the unpowered wing terminate below the wing to a static or mobile anchoring; that anchoring itself may be with its own active thrusting engine or motor or the anchor may simply fall by gravity force—and thus by gravity tug the wing through the ktie lines. When the payload or pilot is simply falling without adding a prime moving engine or motor, then the kited flexible wing is a paragliding wing; when the payload or pilot is additionally arranged with a thrust engine or motor, then the kited unpowered flexible wing with such thrusted payload or pilot is a powered aircraft system or powered paragliding system. The control systems are varied for particular applications. All variations have in common the unpowered kite whether or not the payload and/or pilot is powered.

Governable gliding parachutes

These free-flight kites are governable parachutes and are used as payload delivery systems, sport gliding parachuting or skydiving, BASE jumping, scale-model parachuting. When used for delivery of sensitive payloads or carrying humans, the fast opening from packed format is damped by use of a slider. The wing remains unpowered and kited by bridle tethering lines; the lines attach to platforms or harnesses. The size and design of the kited wing is customized for the final type of use where packing, opening, and sink rate are important feature. Control systems are specialized for the specific use. Control systems sometimes include radio control from remote locations.

Kite aerial photography

Kites used in kite aerial photography are typically controlled using the same reels and spools as non-KAP kite flyers. The best KAP work seems be done at lower altitudes than you might imagine, so no special equipment is required. The most problematic KAP flights are when the best camera shot requires the kite to be flown amongst tall trees or buildings, so quick haul-in can be a plus.
The camera rig itself is attached to the kite line some distance beneath the kite, preferably with a pulley scheme that will permit the camera to float in a level attitude regardless of the kite's gyrations. The Picavet system is one such scheme.
Further sophistication in kite photography comes with live video and radio control features to control where the camera is pointing. This is superior to the minimal rig which simply clicks the camera every few minutes and must be hauled down to earth to change the direction in which the camera points. The penalty of the radio control rigs is weight, which requires higher winds to do photography. So in addition to clear skies, you must also have high winds, which will limit opportunities for photography.

Solar sail and plasma kites

Scientists on one type of solar kite take pride that there will be a minimum of moving parts to control the movement of the solar kite through space and around the earth, moon, comet, or other solar system body. A collection of scientists and engineers are expanding the definition of what is a kite; the solar kite described by authors C. Jack and C. Welch has the inertia of the mass of the kite providing resistance against photonic flow; also, the controlling of the kite to alter the kite's acceleration sets up a kiting scenario: cause the kite to deflect away from the pull of gravity to keep the kite flying intended path supports the inclusion of the solar sail as a kite in photonic flow. The kite is fed start data; the kite tracks the stars and operates three elements to control its attitude to effect its deflections to result in the flight path desired by the ground-directing kite operators. The position of the payload is changed to alter the relative positions of the kite's center of pressure and center of mass; this is done in part by piezoelectric actuators. Also, the struts that hold the centered payload are differentially heated; such causes one of the struts to become longer than the cooler struts and thereby changing the center of mass relative to the center of pressure of the kite. Further, to cause an attitude change, tiny photo thrusters tweak the attitude of the kite; such thrusters do not propel the kite, but are only used to change the attitude of the kite's sail. These mechanisms aim to give authoritative control at minimum power use for giving direction to the kite. Working solar kite groups are considering at least seventeen means of control of the solar kite/solar sail. . Solar sail designing including a list of control options.

Patents