The Kodaira–Spencer map was originally constructed in the setting of complex manifolds. Given a complex analytic manifold with charts and biholomorphic maps sending gluing the charts together, the idea of deformation theory is to replace these transition maps by parametrized transition maps over some base with coordinates, such that. This means the parameters deform the complex structure of the original complex manifold. Then, these functions must also satisfy a cocycle condition, which gives a 1-cocycle on with values in its tangent bundle. Since the base can be assumed to be a polydisk, this process gives a map between the tangent space of the base to called the Kodaira–Spencer map.
Original definition
More formally, the Kodaira–Spencer map is where
is a smooth proper map between complex spaces
is the connecting homomorphism obtained by taking a long exact cohomology sequence of the surjection whose kernel is the tangent bundle.
If is in, then its image is called the Kodaira–Spencer class of.
Remarks
Because deformation theory has been extended to multiple other contexts, such as deformations in scheme theory, or ringed topoi, there are constructions of the Kodaira–Spencer map for these contexts. In the scheme theory over a base field of characteristic, there is a natural bijection between isomorphisms classes of and.
Over characteristic the construction of the Kodaira–Spencer map can be done using an infinitesimal interpretation of the cocycle condition. If we have a complex manifold covered by finitely many charts with coordinates and transition functions
where
Recall that a deformation is given by a commutative diagramwhere is the ring of dual numbers and the vertical maps are flat, the deformation has the cohomological interpretation as cocycles on whereIf the satisfy the cocycle condition, then they glue to the deformation. This can be read asUsing the properties of the dual numbers, namely, we haveandhence the cocycle condition on is the following two rules
Conversion to cocycles of vector fields
The cocycle of the deformation can easily be converted to a cocycle of vector fields as follows: given the cocycle we can form the vector fieldwhich is a 1-cochain. Then the rule for the transition maps of gives this 1-cochain as a 1-cocycle, hence a class.
Using vector fields
One of the original constructions of this map used vector fields in the settings of differential geometry and complex analysis. Given the notation above, the transition from a deformation to the cocycle condition is transparent over a small base of dimension one, so there is only one parameter. Then, the cocycle condition can be read asThen, the derivative of with respect to can be calculated from the previous equation asNote because and, then the derivative reads as If we use write a holomorphic vector field, having these partial derivatives as the coefficients, then becausewe get the following equation of vector fieldsRewriting this as the vector fieldswheregives the cocycle condition. Hence this has associated a class in from a deformation.
In scheme theory
Deformations of a smooth varietyhave a Kodaira-Spencer class constructed cohomologically. Associated to this deformation is the short exact sequence which when tensored by the -module gives the short exact sequenceUsing derived categories, this defines an element ingeneralizing the Kodaira–Spencer map. Notice this could be generalized to any smooth map in using the cotangent sequence, giving an element in.
Of ringed topoi
One of the most abstract constructions of the Kodaira–Spencer maps comes from the cotangent complexes associated to a composition of maps of ringed topoiThen, associated to this composition is a distinguished triangleand this boundary map forms the Kodaira–Spencer map. If the two maps in the composition are smooth maps of schemes, then this class coincides with the class in.
Examples
With analytic germs
The Kodaira–Spencer map when considering analytic germs is easily computable using the tangent cohomology in deformation theory and its versal deformations. For example, given the germ of a polynomial, its space of deformations can be given by the moduleFor example, if then its veral deformations is given byhence an arbitrary deformation is given by. Then for a vector, which has the basisthere the map sending
For an affine hypersurface over a field defined by a polynomial, there is the associated fundamental triangleThen, applying gives the long exact sequenceRecall that there is the isomorphismfrom general theory of derived categories, and the ext group classifies the first-order deformations. Then, through a series of reductions, this group can be computed. First, since is a free module,. Also, because, there are isomorphismsThe last isomorphism comes from the isomorphism, and a morphism in
send
giving the desired isomorphism. From the cotangent sequence the connecting map of the long exact sequence is the dual of, giving the isomorphismNote this computation can be done by using the cotangent sequence and computing. Then, the Kodaira–Spencer map sends a deformationto the element.