Laser beam profiler
A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers — ultraviolet, visible, infrared, continuous wave, pulsed, high-power, low-power — there is an assortment of instrumentation for measuring laser beam profiles. No single laser beam profiler can handle every power level, pulse duration, repetition rate, wavelength, and beam size.
Overview
Laser beam profiling instruments measure the following quantities:- Beam width: There are over five definitions of beam width.
- Beam quality: Quantified by the beam quality parameter, M2.
- Beam divergence: This is a measure of the spreading of the beam with distance.
- Beam profile: A beam profile is the 2D intensity plot of a beam at a given location along the beam path. A Gaussian or flat-top profile is often desired. The beam profile indicates nuisance high-order spatial modes in a laser cavity as well as hot spots in the beam.
- Beam astigmatism: The beam is astigmatic when the vertical and horizontal parts of the beam focus in different locations along the beam path.
- Beam wander or jitter: The amount that the centroid or peak value of the beam profile moves with time.
- Camera techniques: These include the direct illumination of a camera sensor. The maximum spot size that will fit onto a CCD sensor is on the order of 10 mm. Alternatively, illuminating a flat diffuse surface with the laser and imaging the light onto a CCD with a lens allows profiling of larger-diameter beams. Viewing lasers off diffuse surfaces is excellent for large beam widths but requires a diffuse surface that has uniform reflectivity over the illuminated surface.
- Knife-edge technique: A spinning blade or slit cuts the laser beam before detection by a power meter. The power meter measures the intensity as a function of time. By taking the integrated intensity profiles in a number of cuts, the original beam profile can be reconstructed using algorithms developed for tomography. This usually does not work for pulsed lasers, and does not provide a true 2D beam profile, but it does have excellent resolution, in some cases <1 μm.
- Phase-front technique: The beam is passed through a 2D array of tiny lenses in a Shack–Hartmann wavefront sensor. Each lens will redirect its portion of the beam, and from the position of the deflected beamlet, the phase of the original beam can be reconstructed.
- Historical techniques: These include the use of photographic plates and burn plates. For example, high-power carbon dioxide lasers were profiled by observing slow burns into acrylate blocks.
Applications
The applications of laser beam profiling include:- Laser cutting: A laser with an elliptical beam profile has a wider cut along one direction than along the other. The width of the beam influences the edges of the cut. A narrower beam width yields high fluence and ionizes, rather than melts, the machined part. Ionized edges are cleaner and have less knurling than melted edges.
- Nonlinear optics: Frequency conversion efficiency in :Category:Nonlinear optical materials|nonlinear optical materials is proportional to the square of the input light intensity. Therefore, to get efficient frequency conversion, the input beam waist must be as small as possible. A beam profiler can help minimize the beam waist in the nonlinear crystal.
- Alignment: Beam profilers align beams with orders of magnitude better angular accuracy than irises.
- Laser monitoring: It is often necessary to monitor the laser output to see whether the beam profile changes after long hours of operation. Maintaining a particular beam shape is critical for adaptive optics, nonlinear optics, and laser-to-fiber delivery. In addition, laser status can be measured by imaging the emitters of a pump diode laser bar and counting the number of emitters that have failed or by placing several beam profilers at various points along a laser amplifier chain.
- Laser and laser amplifier development: Thermal relaxation in pulse-pumped amplifiers causes temporal and spatial variations in the gain crystal, effectively distorting the beam profile of the amplified light. A beam profiler placed at the output of the amplifier yields a wealth of information about transient thermal effects in the crystal. By adjusting the pump current to the amplifier and tuning the input power level, the output beam profile can be optimized in real-time.
- Far-field measurement: It is important to know the beam profile of a laser for laser radar or free-space optical communications at long distances, the so-called "far-field". The width of the beam in its far-field determines the amount of energy collected by a communications receiver and the amount of energy incident on the ladar's target. Measuring the far-field beam profile directly is often impossible in a laboratory because of the long path length required. A lens, on the other hand, transforms the beam so that the far-field occurs near its focus. A beam profiler placed near the focus of the lens measures the far-field beam profile in significantly less benchtop space.
- Education: Beam profilers can be used for student laboratories to verify diffraction theories and test the Fraunhofer or Fresnel diffraction integral approximations. Other student laboratory ideas include using a beam profiler to measure Poisson's spot of an opaque disk and to map out the Airy disk diffraction pattern of a clear disk.
Measurements
Beam width
The beam width is the single most important characteristic of a laser beam profile. At least five definitions of beam width are in common use: D4σ, 10/90 or 20/80 knife-edge, 1/e2, FWHM, and D86. The D4σ beam width is the ISO standard definition and the measurement of the M² beam quality parameter requires the measurement of the D4σ widths. The other definitions provide complementary information to the D4σ and are used in different circumstances. The choice of definition can have a large effect on the beam width number obtained, and it is important to use the correct method for any given application. The D4σ and knife-edge widths are sensitive to background noise on the detector, while the 1/e2 and FWHM widths are not. The fraction of total beam power encompassed by the beam width depends on which definition is used.Beam quality
Beam quality parameter, M2
The M2 parameter is a measure of beam quality; a low M2 value indicates good beam quality and ability to be focused to a tight spot. The value M is equal to the ratio of the beam's angle of divergence to that of a Gaussian beam with the same D4σ waist width. Since the Gaussian beam diverges more slowly than any other beam shape, the M2 parameter is always greater than or equal to one. Other definitions of beam quality have been used in the past, but the one using second moment widths is most commonly accepted.Beam quality is important in many applications. In fiber-optic communications beams with an M2 close to 1 are required for coupling to single-mode optical fiber. Laser machine shops care a lot about the M2 parameter of their lasers because the beams will focus to an area that is M4 times larger than that of a Gaussian beam with the same wavelength and D4σ waist width before focusing; in other words, the fluence scales as 1/M4. The rule of thumb is that M2 increases as the laser power increases. It is difficult to obtain excellent beam quality and high average power due to thermal lensing in the laser gain medium.
The M2 parameter is determined experimentally as follows:
- Measure the D4σ widths at 5 axial positions near the beam waist.
- Measure the D4σ widths at 5 axial positions at least one Rayleigh length away from the waist.
- Fit the 10 measured data points to, where is the second moment of the distribution in the x or y direction, and is the location of the beam waist with second moment width of. Fitting the 10 data points yields M2,, and. Siegman showed that all beam profiles — Gaussian, flat top, TEMXY, or any shape — must follow the equation above provided that the beam radius uses the D4σ definition of the beam width. Using the 10/90 knife-edge, the D86, or the FWHM widths does not work.
Complete E-field beam profiling
Power-in-the-bucket or Strehl definition of beam quality
The M2 parameter is not the whole story in specifying beam quality. A low M2 only implies that the second moment of the beam profile expands slowly. Nevertheless, two beams with the same M2 may not have the same fraction of delivered power in a given area. Power-in-the-bucket and Strehl ratio are two attempts to define beam quality as a function of how much power is delivered to a given area. Unfortunately, there is no standard bucket size or bucket shape and there is no standard beam to compare for the Strehl ratio. Therefore, these definitions must always be specified before a number is given and it presents much difficulty when trying to compare lasers. There is also no simple conversion between M2, power-in-the-bucket, and Strehl ratio. The Strehl ratio, for example, has been defined as the ratio of the peak focal intensities in the aberrated and ideal point spread functions. In other cases, it has been defined as the ratio between the peak intensity of an image divided by the peak intensity of a diffraction-limited image with the same total flux. Since there are many ways power-in-the-bucket and Strehl ratio have been defined in the literature, the recommendation is to stick with the ISO-standard M2 definition for the beam quality parameter and be aware that a Strehl ratio of 0.8, for example, does not mean anything unless the Strehl ratio is accompanied by a definition.Beam divergence
The beam divergence of a laser beam is a measure for how fast the beam expands far from the beam waist. It is usually defined as the derivative of the beam radius with respect to the axial position in the far field, i.e., in a distance from the beam waist which is much larger than the Rayleigh length. This definition yields a divergence half-angle. For a diffraction-limited Gaussian beam, the beam divergence is λ/, where λ is the wavelength and w0 the beam radius at the beam waist. A large beam divergence for a given beam radius corresponds to poor beam quality. A low beam divergence can be important for applications such as pointing or free-space optical communications. Beams with very small divergence, i.e., with approximately constant beam radius over significant propagation distances, are called collimated beams. For the measurement of beam divergence, one usually measures the beam radius at different positions, using e.g. a beam profiler. It is also possible to derive the beam divergence from the complex amplitude profile of the beam in a single plane: spatial Fourier transforms deliver the distribution of transverse spatial frequencies, which are directly related to propagation angles. See US Laser Corps application note for a tutorial on how to measure the laser beam divergence with a lens and CCD camera.Beam astigmatism
Astigmatism in a laser beam occurs when the horizontal and vertical cross sections of the beam focus at different locations along the beam path. Astigmatism can be corrected with a pair of cylindrical lenses. The metric for astigmatism is the power of cylindrical lens needed to bring the focuses of the horizontal and vertical cross sections together. Astigmatism is caused by:- Thermal lensing in slab amplifiers. A slab that is sandwiched between two metal heat sinks will have a temperature gradient between the heat sinks. The thermal gradient causes an index of refraction gradient that is very similar to a cylindrical lens. The cylindrical lensing caused by the amplifier will make the beam astigmatic.
- Unmatched cylindrical lenses or error in placement of these optics.
- Propagation through a nonlinear uniaxial crystal. The x- and y-polarized E-fields experience different refractive indices.
- Not propagating through the center of a spherical lens or mirror.
Beam wander or jitter
Every laser beam wanders and jitters — albeit a small amount. The typical kinematic tip-tilt mount drifts by around 100 μrad per day in a laboratory environment. A laser beam incident upon this mirror will be translated by 100 m at a range of 1000 km. This could make the difference between hitting or not hitting a communications satellite from Earth. Hence, there is a lot of interest in characterizing the beam wander or jitter of a laser beam. The beam wander and jitter can be measured by tracking the centroid or peak of the beam on a CCD beam profiler. The CCD frame rate is typically 30 frames per second and therefore can capture beam jitter that is slower than 30 Hz — it can't see fast vibrations due to one's voice, 60 Hz fan motor hum, or other sources of fast vibrations. Fortunately, this is usually not a great concern for most laboratory laser systems and the frame rates of CCDs are fast enough to capture the beam wander over the bandwidth that contains the greatest noise power. A typical beam wander measurement involves tracking the centroid of the beam over several minutes. The rms deviation of the centroid data gives a clear picture of the laser beam pointing stability. The integration time of the beam jitter measurement should always accompany the computed rms value. Even though the pixel resolution of a camera may be several micrometres, sub-pixel centroid resolution is attained when the signal to noise ratio is good and the beam fills most of the CCD active area.Beam wander is caused by:
- Slow thermalization of the laser. Laser manufacturers usually have a warm-up specification to allow the laser to drift to an equilibrium after startup.
- Tip-tilt and optical mount drift caused by thermal gradients, pressure, and loosening of springs.
- Non-rigidly mounted optics
- Vibration due to fans, people walking/sneezing/breathing, water pumps, and movement of vehicles outside the laboratory.
Misrepresentation of beam profiler measurements for laser systems
- Is the specification typical or worst-case performance?
- What beam width definition was used?
- Is the M2 parameter for both vertical and horizontal cross sections, or just for the better cross section?
- Was M2 measured using the ISO-standard technique or some other way — e.g. power in the bucket.
- Over how long was the data taken to come up with the specified rms beam jitter. What was the laser environment ?
- What is the warm-up time needed to achieve the specified M2, beam width, divergence, astigmatism, and jitter?
Techniques
Scanning-aperture techniques
The most common scanning aperture techniques are the knife-edge technique and the scanning-slit profiler. The former chops the beam with a knife and measures the transmitted power as the blade cuts through the beam. The measured intensity versus knife position yields a curve that is the integrated beam intensity in one direction. By measuring the intensity curve in several directions, the original beam profile can be reconstructed using algorithms developed for x-ray tomography. The measuring instrument is based on high precision multiple knife edges each deployed on a rotating drum and having a different angle with respect to beam orientation. Scanned beam is then reconstructed using tomographic algorithms and provides 2D or 3D high resolution energy distribution plots. Because of the special scanning technique the system automatically zooms in onto the current beam size enabling high resolution measurements of sub micron beams as well as relative large beams of 10 or more millimeters. To obtain measurement of various wavelength different detectors are used to allow laser beam measurements from deep UV to far IR. Unlike other camera based systems this technology also provides accurate power measurement in real timeScanning-slit profilers use a narrow slit instead of a single knife edge. In this case, the intensity is integrated over the slit width. The resulting measurement is equivalent to the original cross section convolved with the profile of the slit.
These techniques can measure very small spot sizes down to 1 μm, and can be used to directly measure high power beams. They do not offer continuous readout, although repetition rates as high as twenty hertz can be achieved. Also, the profiles give integrated intensities in the x and y directions and not the actual 2D spatial profile. They do not generally work for pulsed laser sources, because of the extra complexity of synchronizing the motion of the aperture and the laser pulses.
CCD camera technique
The CCD camera technique is simple: attenuate and shine a laser onto a CCD and measure the beam profile directly. It is for this reason that the camera technique is the most popular method for laser beam profiling. The most popular cameras used are silicon CCDs that have sensor diameters that range up to 25 mm and pixel sizes down to a few micrometres. These cameras are also sensitive to a broad range of wavelengths, from deep UV, 200 nm, to near infrared, 1100 nm; this range of wavelengths encompass a broad range of laser gain media. The advantages of the CCD camera technique are:- It captures the 2D beam profile in real-time
- High dynamic range. Even a webcam's CCD chip has a dynamic range of around 2⁸.
- Software typically displays critical beam metrics, such as D4σ width, in real-time
- Sensitive CCD detectors can capture the beam profiles of weak lasers
- Resolution down to about 4 μm, depending on the pixel size. In a special case a resolution of ±1.1 μm was demonstrated.
- CCD cameras with trigger inputs can be used to capture beam profiles of low-duty-cycle pulsed lasers
- CCD's have broad wavelength sensitivities from 200 to 1100 nm
- Attenuation is required for high-power lasers
- CCD sensor size is limited to about 1 inch.
- CCDs are prone to blooming when used near the edge of their sensitivity
Baseline subtraction for D4σ width measurements
Averaging to get better measurements
Averaging consecutive CCD images yields a cleaner profile and removes both CCD imager noise and laser beam intensity fluctuations. The signal-to-noise-ratio of a pixel for a beam profile is defined as the mean value of the pixel divided by its root-mean-square value. The SNR improves as square root of the number of captured frames for shot noise processes – dark current noise, readout noise, and Poissonian detection noise. So, for example, increasing the number of averages by a factor of 100 smooths out the beam profile by a factor of 10.Attenuation techniques
Since CCD sensors are highly sensitive, attenuation is almost always needed for proper beam profiling. For example, 40 dB of attenuation is typical for a milliwatt HeNe laser. Proper attenuation has the following properties:- It does not result in multiple reflections leaving a ghost image on the CCD sensor
- It does not result in interference fringes due to reflections between parallel surfaces or diffraction by defects
- It does not distort the wavefront and will be an optical element with sufficient optical flatness and homogeneity
- It can handle the required optical power
Neutral density filters
Neutral density filters come in two types: absorptive and reflective.Absorptive filters are usually made of tinted glass. They are useful for lower-power applications that involve up to about 100 mW average power. Above those power levels, thermal lensing may occur, causing beam size change or deformation, because of the low thermal conductivity of the substrate. Higher power may result in melting or cracking. Absorptive filter attenuation values are usually valid for the visible spectrum and are not valid outside of that spectral region. Some filters can be ordered and calibrated for near-infrared wavelengths, up to the long wavelength absorption edge of the substrate. Typically, one can expect about 5-10% variation of the attenuation across a ND filter, unless specified otherwise to the manufacturer. The attenuation values of ND filters are specified logarithmically. A ND 3 filter transmits 10−3 of the incident beam power. Placing the largest attenuator last before the CCD sensor will result in the best rejection of ghost images due to multiple reflections.
Reflective filters are made with a thin metallic coating and hence operate over a larger bandwidth. An ND 3 metallic filter will be good over 200–2000 nm. The attenuation will rapidly increase outside this spectral region because of absorption in the glass substrate. These filters reflect rather than absorb the incident power, and hence can handle higher input average powers. However, they are less well suited to the high peak powers of pulsed lasers. These filters work fine to about 5 W average power before heating causes them to crack. Since these filters reflect light, one must be careful when stacking multiple ND filters, since multiple reflections among the filters will cause a ghost image to interfere with the original beam profile. One way to mitigate this problem is by tilting the ND filter stack. Assuming that the absorption of the metallic ND filter is negligible, the order of the ND filter stack doesn't matter, as it does for the absorptive filters.
Diffractive beam sampler
Diffractive beam samplers are used to monitor high power lasers where optical losses and wavefront distortions of the transmitted beam need to be kept to a minimum.In most applications, most of the incident light must continue forward, "unaffected," in the "zero order diffracted order" while a small amount of the beam is diffracted into a higher diffractive order, providing a "sample" of the beam.
By directing the sampled light in the higher order onto a detector, it is possible to monitor, in real time, not only the power levels of a laser beam, but also its profile, and other laser characteristics.