Lazard's universal ring
In mathematics, Lazard's universal ring is a ring introduced by Michel Lazard in over which the universal commutative one-dimensional formal group law is defined.
There is a universal commutative one-dimensional formal group law over a universal commutative ring defined as follows. We let
be
for indeterminates, and we define the universal ring R to be the commutative ring generated by the elements, with the relations that are forced by the associativity and commutativity laws for formal group laws. More or less by definition, the ring R has the following universal property:
The commutative ring R constructed above is known as Lazard's universal ring. At first sight it seems to be incredibly complicated: the relations between its generators are very messy. However Lazard proved that it has a very simple structure: it is just a polynomial ring on generators of degree 1, 2, 3,..., where has degree. proved that the coefficient ring of complex cobordism is naturally isomorphic as a graded ring to Lazard's universal ring. Hence, topologists commonly regrade the Lazard ring so that has degree, because the coefficient ring of complex cobordism is evenly graded.