Lie superalgebra


In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a Z2-grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. In most of these theories, the even elements of the superalgebra correspond to bosons and odd elements to fermions.

Definition

Formally, a Lie superalgebra is a nonassociative Z2-graded algebra, or superalgebra, over a commutative ring whose product , called the Lie superbracket or supercommutator, satisfies the two conditions :
Super skew-symmetry:
The super Jacobi identity:
where x, y, and z are pure in the Z2-grading. Here, |x| denotes the degree of x. The degree of is the sum of degree of x and y modulo 2.
One also sometimes adds the axioms for |x| = 0 and for |x| = 1. When the ground ring is the integers or the Lie superalgebra is a free module, these conditions are equivalent to the condition that the Poincaré–Birkhoff–Witt theorem holds.
Just as for Lie algebras, the universal enveloping algebra of the Lie superalgebra can be given a Hopf algebra structure.
A graded Lie algebra that is anticommutative and Jacobi in the graded sense also has a grading, but is not referred to as "super". See note at graded Lie algebra for discussion.

Properties

Let be a Lie superalgebra. By inspecting the Jacobi identity, one sees that there are eight cases depending on whether arguments are even or odd. These fall into four classes, indexed by the number of odd elements:
  1. No odd elements. The statement is just that is an ordinary Lie algebra.
  2. One odd element. Then is a -module for the action.
  3. Two odd elements. The Jacobi identity says that the bracket is a symmetric -map.
  4. Three odd elements. For all,.
Thus the even subalgebra of a Lie superalgebra forms a Lie algebra as all the signs disappear, and the superbracket becomes a normal Lie bracket, while is a linear representation of, and there exists a symmetric -equivariant linear map such that,
Conditions - are linear and can all be understood in terms of ordinary Lie algebras. Condition is nonlinear, and is the most difficult one to verify when constructing a Lie superalgebra starting from an ordinary Lie algebra and a representation.

Involution

A Lie superalgebra is a complex Lie superalgebra equipped with an involutive antilinear map from itself to itself which respects the Z2 grading and satisfies
* = for all x and y in the Lie superalgebra. Its universal enveloping algebra would be an ordinary *-algebra.

Examples

Given any associative superalgebra one can define the supercommutator on homogeneous elements by
and then extending by linearity to all elements. The algebra together with the supercommutator then becomes a Lie superalgebra. The simplest example of this procedure is perhaps when is the space of all linear functions of a super vector space to itself. When, this space is denoted by or. With the Lie bracket per above, the space is denoted.
The Whitehead product on homotopy groups gives many examples of Lie superalgebras over the integers.

Classification

The simple complex finite-dimensional Lie superalgebras were classified by Victor Kac.
The basic classical compact Lie superalgebras are:
SU These are the superunitary Lie algebras which have invariants:
This gives two orthosymplectic invariants if we take the m z variables and n w variables to be non-commutative and we take the real and imaginary parts. Therefore, we have
SU/U A special case of the superunitary Lie algebras where we remove one U generator to make the algebra simple.
OSp These are the orthosymplectic groups. They have invariants given by:
for m commutative variables and n pairs of anti-commutative variables. They are important symmetries in supergravity theories.
D This is a set of superalgebras parameterised by the variable . It has dimension 17 and is a sub-algebra of OSp. The even part of the group is O×O×O. So the invariants are:
for particular constants.
F
This exceptional Lie superalgebra has dimension 40 and is a sub-algebra of OSp. The even part of the group is OxSO so three invariants are:
This group is related to the octonions by considering the 16 component spinors as two component octonion spinors and the gamma matrices acting on the upper indices as unit octonions. We then have where f is the structure constants of octonion multiplication.
G
This exceptional Lie superalgebra has dimension 31 and is a sub-algebra of OSp. The even part of the group is O×G2. The invariants are similar to the above so the first invariant is:
There are also two so-called strange series called p and q.

Classification of infinite-dimensional simple linearly compact Lie superalgebras

The classification consists of the 10 series W, S ≠ ), H, K, HO, SHO, KO, SKO, SHO ∼ , SKO ∼ and the five exceptional algebras:
The last two are particularly interesting because they have the standard model gauge group SU×SU as their zero level algebra. Infinite-dimensional Lie superalgebras are important symmetries in superstring theory. Specifically, the Virasoro algebras with supersymmetries are which only have central extensions up to.

Category-theoretic definition

In category theory, a Lie superalgebra can be defined as a nonassociative superalgebra whose product satisfies
where σ is the cyclic permutation braiding. In diagrammatic form:

Historical