A lighting control system is an intelligent network based lighting control solution that incorporates communication between various system inputs and outputs related to lighting control with the use of one or more central computing devices. Lighting control systems are widely used on both indoor and outdoor lighting of commercial, industrial, and residential spaces. Lighting control systems serve to provide the right amount of light where and when it is needed. Lighting control systems are employed to maximize the energy savings from the lighting system, satisfy building codes, or comply with green building and energy conservation programs. Lighting control systems are often referred to under the term Smart Lighting.
Lighting controls
The term lighting controls is typically used to indicate stand-alone control of the lighting within a space. This may include occupancy sensors, timeclocks, and photocells that are hard-wired to control fixed groups of lights independently. Adjustment occurs manually at each devices location. The efficiency of and market for residential lighting controls has been characterized by the Consortium for Energy Efficiency. The term lighting control system refers to an intelligent networked system of devices related to lighting control. These devices may include relays, occupancy sensors, photocells, light control switches or touchscreens, and signals from other building systems. Adjustment of the system occurs both at device locations and at central computer locations via software programs or other interface devices.
Advantages
The major advantage of a lighting control system over stand-alone lighting controls or conventional manual switching is the ability to control individual lights or groups of lights from a single user interface device. This ability to control multiple light sources from a user device allows complex lighting scenes to be created. A room may have multiple scenes pre-set, each one created for different activities in the room. A major benefit of lighting control systems is reduced energy consumption. Longer lamp life is also gained when dimming and switching off lights when not in use. Wireless lighting control systems provide additional benefits including reduced installation costs and increased flexibility over where switches and sensors may be placed.
Automated control
Lighting control systems typically provide the ability to automatically adjust a lighting device's output based on:
Chronological time
Solar time
Occupancy using occupancy sensors
Daylight availability using photocells
Alarm conditions
Program logic
Chronological time
Chronological time schedules incorporate specific times of the day, week, month or year.
Solar time schedules incorporate sunrise and sunset times, often used to switch outdoor lighting. Solar time scheduling requires that the location of the building be set. This is accomplished using the building's geographic location via either latitude and longitude or by picking the nearest city in a given database giving the approximate location and corresponding solar times.
Electric lighting energy use can be adjusted by automatically dimming and/or switching electric lights in response to the level of available daylight. Reducing the amount of electric lighting used when daylight is available is known as daylight harvesting.
Alarm conditions typically include inputs from other building systems such as the fire alarm or HVAC system, which may trigger an emergency 'all lights on' or ' all lights flashing' command for example.
In the 1980s there was a strong requirement to make commercial lighting more controllable so that it could become more energy efficient. Initially this was done with analog control, allowing fluorescentballasts and dimmers to be controlled from a central source. This was a step in the right direction, but cabling was complicated and therefore not cost effective. Tridonic was an early company to go digital with their broadcast protocols, DSI, in 1991. DSI was a basic protocol as it transmitted one control value to change the brightness of all the fixtures attached to the line. What made this protocol more attractive, and able to compete with the established analog option, was the simple wiring. There are two types of lighting control systems which are:
In production lighting 0-10V system was replaced by analog multiplexed systems such as D54 and AMX192, which themselves have been almost completely replaced by DMX512. For dimmable fluorescent lamps the system is being replaced by DSI, which itself is in the process of being replaced by DALI. Examples for digital lighting control systems are:
Those are all wired lighting control systems. There are also wireless lighting control systems that are based on some standard protocols like MIDI, ZigBee, Bluetooth Mesh, and others. The standard for digital addressable lighting interface, mostly in professional and commercial deployments, is . This standard specifies the underlying technologies, which in wireless are , which operates in the industrial Sub-1 GHz frequency band and Bluetooth Mesh, which operates in the 2.4 GHz frequency band.
Architectural lighting control systems can integrate with a theater's on-off and dimmer controls, and are often used for house lights and stage lighting, and can include worklights, rehearsal lighting, and lobby lighting. Control stations can be placed in several locations in the building and range in complexity from single buttons that bring up preset options-looks, to in-wall or desktop LCDtouchscreen consoles. Much of the technology is related to residential and commercial lighting control systems. The benefit of architectural lighting control systems in the theater is the ability for theater staff to turn worklights and house lights on and off without having to use a lighting control console. Alternately, the light designer can control these same lights with light cues from the lighting control console so that, for instance, the transition from houselights being up before a show starts and the first light cue of the show is controlled by one system.
Bluetooth lighting control
The new type of control for lighting system is using Bluetooth connection directly to the lighting system. It is recently introduced by Philips HUEand company new name as Signify formerly known as Philips Lighting. This system will need a smartphone or tablet where the user can install a special Philips Hue Bluetooth app. The Bluetooth bulbs don't need a Philips Hue bridge to function. There is no need to have a Wi-Fi or data connection for controlling the lights with that system.