Lightness


In colorimetry and color theory, lightness, also known as value or tone, is a representation of variation in the perception of a color or color space's brightness. It is one of the color appearance parameters of any color appearance model.
Various color models have an explicit term for this property. The Munsell and HSV color models use the term value, while the HSL color model, HCL color space and CIELAB color space use the term lightness.
In some of these models, the lightness or value is the absolute brightness. In Munsell, for example, the only color with value 0 is pure black, and the only color with value 10 is pure white. Colors with a discernable hue must have values in between these extremes.
In HSL and HSV, the lightness or value is a relative brightness. Both systems use coordinate triples, where many triples can map onto the same color. In HSV, all triples with value 0 are pure black. If the hue and saturation are held constant, then increasing the value increases the brightness, such that a value of 1 is the brightest color with the given hue and saturation. HSL is similar, except that all triples with lightness 1 are pure white. In both models, all pure saturated colors have the same lightness or value, and the absolute brightness is determined by the hue: yellow is brighter than blue.
In subtractive color value changes through various tints and shades can be achieved by adding white or black, respectively, to the color. However, this also reduces saturation. Chiaroscuro and Tenebrism both take advantage of dramatic contrasts of value to heighten drama in art. Artists may also employ shading, subtle manipulation of value.

Lightness and human perception

While HSL, HSV, and related spaces serve well enough to, for instance, choose a single color, they ignore much of the complexity of color appearance. Essentially, they trade off perceptual relevance for computation speed, from a time in computing history when more sophisticated models would have been too computationally expensive.
HSL and HSV are simple transformations of the RGB color model which preserve symmetries in the RGB cube unrelated to human perception, such that its R, G, and B corners are equidistant from the neutral axis, and equally spaced around it. If we plot the RGB gamut in a more perceptually uniform space, such as CIELAB, it becomes immediately clear that the red, green, and blue primaries do not have the same lightness or chroma, or evenly spaced hues. Furthermore, different RGB displays use different primaries, and so have different gamuts. Because HSL and HSV are defined purely with reference to some RGB space, they are not absolute color spaces: to specify a color precisely requires reporting not only HSL or HSV values, but also the characteristics of the RGB space they are based on, including the gamma correction in use.
If we take an image and extract the hue, saturation, and lightness or value components, and then compare these to the components of the same name as defined by color scientists, we can quickly see the difference, perceptually. For example, examine the following images of a fire breather. The original is in the sRGB color space. CIELAB L* is a CIE-defined achromatic lightness quantity, and it is plain that this appears similar in perceptual lightness to the original color image. Luma is roughly similar, but differs somewhat at high chroma, where it deviates most from a true achromatic luma such as luminance Y, or the similarly achromatic L* and is influenced by the colorimetric chromaticity. HSL L and HSV V diverge substantially from perceptual lightness.

Relationship to value and relative luminance

The Munsell value has long been used as a perceptually uniform lightness scale. A question of interest is the relationship between the Munsell value scale and the relative luminance. Aware of the Weber–Fechner law, Munsell remarked "Should we use a logarithmic curve or curve of squares?" Neither option turned out to be quite correct; scientists eventually converged on a roughly cube-root curve, consistent with the Stevens's power law for brightness perception, reflecting the fact that lightness is proportional to the number of nerve impulses per nerve fiber per unit time. The remainder of this section is a chronology of lightness approximations, leading to CIELAB.
Note. – Munsell's V runs from 0 to 10, while Y typically runs from 0 to 100. Typically, the relative luminance is normalized so that the "reference white" has a tristimulus value of. Since the reflectance of magnesium oxide relative to the perfect reflecting diffuser is 97.5%, corresponds to if MgO is used as the reference.

1920

1933

1943

1943

1944

1955

1958

1964

1976

At first glance, you might approximate the lightness function by a cube root, an approximation that is found in much of the technical literature. However, the linear segment near black is significant, and so the 116 and 16 coefficients. The best-fit pure power function has an exponent of about 0.42, far from 1/3.
An approximately 18% grey card, having an exact reflectance of, has a lightness value of 50. It is called "mid grey" because its lightness is midway between black and white.

Other psychological effects

This subjective perception of luminance in a non-linear fashion is one thing that makes gamma compression of images worthwhile. Beside this phenomenon there are other effects involving perception of lightness. Chromacity can affect perceived lightness as described by the Helmholtz–Kohlrausch effect. Though the CIELAB space and relatives do not account for this effect on lightness, it may be implied in the Munsell color model.
Light levels may also affect perceived chromacity, as with the Purkinje effect.