List of space groups


There are 230 space groups in three dimensions, given by a number index, and a full name in Hermann–Mauguin notation, and a short name. The long names are given with spaces for readability. The groups each have a point group of the unit cell.

Symbols

In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group.
These are the Bravais lattices in three dimensions:
A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell. The d glide is often called the diamond glide plane as it features in the diamond structure.
A gyration point can be replaced by a screw axis denoted by a number, n, where the angle of rotation is . The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 21 is a 180° rotation followed by a translation of ½ of the lattice vector. 31 is a 120° rotation followed by a translation of ⅓ of the lattice vector.
The possible screw axes are: 21, 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.
In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups. This is somtimes supplemented with a symbol of the form which specifies the bravais lattice. Here is the lattice system, and is the centering type.
In Fedorov symbol, the type of space group is denoted as s, h, or a. The number is related to the order in which Fedorov derived space groups. There are 73 symmorphic, 54 hemisymmorphic, and 103 asymmorphic space groups. Symmorphic space groups can be obtained as combination of Bravais lattices with corresponding point group. These groups contain the same symmetry elements as the corresponding point groups. Hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. All the other space groups are asymmorphic. Example for point group 4/mmm : the symmorphic space groups are P4/mmm and I4/mmm ; hemisymmorphic space groups should contain axial combination 422, these are P4/mcc, P4/nbm, P4/nnc, and I4/mcm.

List of Triclinic

NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
11P1P 11s
2PP 2s

List of Monoclinic

List of Orthorhombic

NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold Fibrifold
16222rowspan=9P222P 2 2 29s
17222P2221P 2 2 214a-
18222P21212P 21 21 27a-
19222P212121P 21 21 218a-
20222C2221C 2 2 215a-
21222C222C 2 2 210s-
22222F222F 2 2 212s-
23222I222I 2 2 211s-
24222I212121I 21 21 216a-
25mm2rowspan=22Pmm2P m m 213s
26mm2Pmc21P m c 219a,-
27mm2Pcc2P c c 25h-
28mm2Pma2P m a 26h,-
29mm2Pca21P c a 2111a-
30mm2Pnc2P n c 27h,-
31mm2Pmn21P m n 2110a,-
32mm2Pba2P b a 29h-
33mm2Pna21P n a 2112a,-
34mm2Pnn2P n n 28h-
35mm2Cmm2C m m 214s-
36mm2Cmc21C m c 2113a,-
37mm2Ccc2C c c 210h-
38mm2Amm2A m m 215s,-
39mm2Aem2A b m 211h,-
40mm2Ama2A m a 212h,-
41mm2Aea2A b a 213h,-
42mm2Fmm2F m m 217s-
43mm2Fdd2F dd216h-
44mm2Imm2I m m 216s-
45mm2Iba2I b a 215h-
46mm2Ima2I m a 214h,-
47rowspan=28rowspan=28PmmmP 2/m 2/m 2/m18s
48PnnnP 2/n 2/n 2/n19h--
49PccmP 2/c 2/c 2/m17h--
50PbanP 2/b 2/a 2/n18h--
51PmmaP 21/m 2/m 2/a14a,--
52PnnaP 2/n 21/n 2/a17a,--
53PmnaP 2/m 2/n 21/a15a,--
54PccaP 21/c 2/c 2/a16a,--
55PbamP 21/b 21/a 2/m22a--
56PccnP 21/c 21/c 2/n27a--
57PbcmP 2/b 21/c 21/m23a,--
58PnnmP 21/n 21/n 2/m25a--
59PmmnP 21/m 21/m 2/n24a--
60PbcnP 21/b 2/c 21/n26a,--
61PbcaP 21/b 21/c 21/a29a--
62PnmaP 21/n 21/m 21/a28a,--
63CmcmC 2/m 2/c 21/m18a,--
64CmcaC 2/m 2/c 21/a19a,--
65CmmmC 2/m 2/m 2/m19s--
66CccmC 2/c 2/c 2/m20h--
67CmmeC 2/m 2/m 2/e21h--
68CcceC 2/c 2/c 2/e22h--
69FmmmF 2/m 2/m 2/m21s--
70FdddF 2/d 2/d 2/d24h--
71ImmmI 2/m 2/m 2/m20s--
72IbamI 2/b 2/a 2/m23h--
73IbcaI 2/b 2/c 2/a21a--
74ImmaI 2/m 2/m 2/a20a--

List of Tetragonal

NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
754rowspan=6P4P 422s
764P41P 4130a-
774P42P 4233a-
784P43P 4331a-
794I4I 423s-
804I41I 4132a-
81rowspan=2PP 26s
82II 27s-
834/mrowspan=6P4/mP 4/m28s
844/mP42/mP 42/m41a-
854/mP4/nP 4/n29h-
864/mP42/nP 42/n42a-
874/mI4/mI 4/m29s-
884/mI41/aI 41/a40a-
89422rowspan=10P422P 4 2 230s
90422P4212P421243a-
91422P4122P 41 2 244a-
92422P41212P 41 21 248a-
93422P4222P 42 2 247a-
94422P42212P 42 21 250a-
95422P4322P 43 2 245a-
96422P43212P 43 21 249a-
97422I422I 4 2 231s-
98422I4122I 41 2 246a-
994mmrowspan=12P4mmP 4 m m24s
1004mmP4bmP 4 b m26h-
1014mmP42cmP 42 c m37a-
1024mmP42nmP 42 n m38a-
1034mmP4ccP 4 c c25h-
1044mmP4ncP 4 n c27h-
1054mmP42mcP 42 m c36a-
1064mmP42bcP 42 b c39a-
1074mmI4mmI 4 m m25s-
1084mmI4cmI 4 c m28h-
1094mmI41mdI 41 m d34a-
1104mmI41cdI 41 c d35a-
1112mrowspan=12P2mP 2 m32s
1122mP2cP 2 c30h-
1132mP21mP 21 m52a-
1142mP21cP 21 c53a-
1152mPm2P m 233s-
1162mPc2P c 231h-
1172mPb2P b 232h-
1182mPn2P n 233h-
1192mIm2I m 235s-
1202mIc2I c 234h-
1212mI2mI 2 m34s-
1222mI2dI 2 d51a-
1234/m 2/m 2/mrowspan=20P4/mmmP 4/m 2/m 2/m36s
1244/m 2/m 2/mP4/mccP 4/m 2/c 2/c35h-
1254/m 2/m 2/mP4/nbmP 4/n 2/b 2/m36h-
1264/m 2/m 2/mP4/nncP 4/n 2/n 2/c37h-
1274/m 2/m 2/mP4/mbmP 4/m 21/b 2/m54a-
1284/m 2/m 2/mP4/mncP 4/m 21/n 2/c56a-
1294/m 2/m 2/mP4/nmmP 4/n 21/m 2/m55a-
1304/m 2/m 2/mP4/nccP 4/n 21/c 2/c57a-
1314/m 2/m 2/mP42/mmcP 42/m 2/m 2/c60a-
1324/m 2/m 2/mP42/mcmP 42/m 2/c 2/m61a-
1334/m 2/m 2/mP42/nbcP 42/n 2/b 2/c63a-
1344/m 2/m 2/mP42/nnmP 42/n 2/n 2/m62a-
1354/m 2/m 2/mP42/mbcP 42/m 21/b 2/c66a-
1364/m 2/m 2/mP42/mnmP 42/m 21/n 2/m65a-
1374/m 2/m 2/mP42/nmcP 42/n 21/m 2/c67a-
1384/m 2/m 2/mP42/ncmP 42/n 21/c 2/m65a-
1394/m 2/m 2/mI4/mmmI 4/m 2/m 2/m37s-
1404/m 2/m 2/mI4/mcmI 4/m 2/c 2/m38h-
1414/m 2/m 2/mI41/amdI 41/a 2/m 2/d59a-
1424/m 2/m 2/mI41/acdI 41/a 2/c 2/d58a-

List of Trigonal

NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
1433rowspan=4P3P 338s
1443P31P 3168a-
1453P32P 3269a-
1463R3R 339s-
147rowspan=2PP 51s
148RR 52s-
14932rowspan=7P312P 3 1 245s
15032P321P 3 2 144s-
15132P3112P 31 1 272a-
15232P3121P 31 2 170a-
15332P3212P 32 1 273a-
15432P3221P 32 2 171a-
15532R32R 3 246s-
1563mrowspan=6P3m1P 3 m 140s
1573mP31mP 3 1 m41s-
1583mP3c1P 3 c 139h-
1593mP31cP 3 1 c40h-
1603mR3mR 3 m42s-
1613mR3cR 3 c41h-
162 2/mrowspan=6P1mP 1 2/m56s
163 2/mP1cP 1 2/c46h-
164 2/mPm1P 2/m 155s-
165 2/mPc1P 2/c 145h-
166 2/mRmR 2/m57s-
167 2/mRcR 2/c47h-

List of Hexagonal

NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovFibrifold
1686rowspan=6P6P 649s
1696P61P 6174a-
1706P65P 6575a-
1716P62P 6276a-
1726P64P 6477a-
1736P63P 6378a-
174PP 43s
1756/mrowspan=2P6/mP 6/m53s
1766/mP63/mP 63/m81a-
177622rowspan=6P622P 6 2 254s
178622P6122P 61 2 282a-
179622P6522P 65 2 283a-
180622P6222P 62 2 284a-
181622P6422P 64 2 285a-
182622P6322P 63 2 286a-
1836mmrowspan=4P6mmP 6 m m50s
1846mmP6ccP 6 c c44h-
1856mmP63cmP 63 c m80a-
1866mmP63mcP 63 m c79a-
187m2rowspan=4Pm2P m 248s
188m2Pc2P c 243h-
189m2P2mP 2 m47s-
190m2P2cP 2 c42h-
1916/m 2/m 2/mrowspan=4P6/mmmP 6/m 2/m 2/m58s
1926/m 2/m 2/mP6/mccP 6/m 2/c 2/c48h-
1936/m 2/m 2/mP63/mcmP 63/m 2/c 2/m87a-
1946/m 2/m 2/mP63/mmcP 63/m 2/m 2/c88a-

List of Cubic

NumberPoint groupOrbifoldShort nameFull nameSchoenfliesFedorovShubnikovConwayFibrifold Fibrifold
19523rowspan=5P23P 2 359s
19623F23F 2 361s-
19723I23I 2 360s-
19823P213P 21 389a-
19923I213I 21 390a-
2002/m rowspan=7PmP 2/m 62s
2012/m PnP 2/n 49h-
2022/m FmF 2/m 64s-
2032/m FdF 2/d 50h-
2042/m ImI 2/m 63s-
2052/m PaP 21/a 91a-
2062/m IaI 21/a 92a-
207432rowspan=8P432P 4 3 268s
208432P4232P 42 3 298a-
209432F432F 4 3 270s-
210432F4132F 41 3 297a-
211432I432I 4 3 269s-
212432P4332P 43 3 294a-
213432P4132P 41 3 295a-
214432I4132I 41 3 296a-
2153mrowspan=6P3mP 3 m65s
2163mF3mF 3 m67s-
2173mI3mI 3 m66s-
2183mP3nP 3 n51h-
2193mF3cF 3 c52h-
2203mI3dI 3 d93a-
2214/m 2/mrowspan=10PmmP 4/m 2/m71s
2224/m 2/mPnnP 4/n 2/n53h-
2234/m 2/mPmnP 42/m 2/n102a-
2244/m 2/mPnmP 42/n 2/m103a-
2254/m 2/mFmmF 4/m 2/m73s-
2264/m 2/mFmcF 4/m 2/c54h-
2274/m 2/mFdmF 41/d 2/m100a-
2284/m 2/mFdcF 41/d 2/c101a-
2294/m 2/mImmI 4/m 2/m72s-
2304/m 2/mIadI 41/a 2/d99a-