Markov spectrum


In mathematics, the Markov spectrum devised by Andrey Markov is a complicated set of real numbers arising in Markov Diophantine equation and also in the theory of Diophantine approximation.

Quadratic form characterization

Consider a quadratic form given by f = ax2 + bxy + cy2 and suppose that its discriminant is fixed, say equal to −1/4. In other words, b2 − 4ac = 1.
One can ask for the minimal value achieved by |f| when it is evaluated at non-zero vectors of the grid , and if this minimum does not exist, for the infimum.
The Markov spectrum M is the set obtained by repeating this search with different quadratic forms with discriminant fixed to −1/4:

Lagrange spectrum

Starting from Hurwitz's theorem on Diophantine approximation, that any real number has a sequence of rational approximations m/n tending to it with
it is possible to ask for each value of 1/c with 1/c ≥ about the existence of some for which
for such a sequence, for which c is the best possible value. Such 1/c make up the Lagrange spectrum L, a set of real numbers at least . The formulation with the reciprocal is awkward, but the traditional definition invites it; looking at the set of c instead allows a definition instead by means of an inferior limit. For that, consider
where m is chosen as an integer function of n to make the difference minimal. This is a function of, and the reciprocal of the Lagrange spectrum is the range of values it takes on irrational numbers.

Relation with Markov spectrum

The initial part of the Lagrange spectrum, namely the part lying in the interval , 3), is [equal to the Markov spectrum. The first few values are,, /5, /13,... and the nth number of this sequence can be calculated from the nth Markov number by the formula
Freiman's constant is the name given to the end of the last gap in the Lagrange spectrum, namely:
Real numbers greater than F are also members of the Markov spectrum. Moreover, it is possible to prove that L is strictly contained in M.

Geometry of Markov and Lagrange spectrum

On one hand, the initial part of the Markov and Lagrange spectrum lying in the interval .