Maurice A. de Gosson


Maurice A. de Gosson, is an Austrian mathematician and mathematical physicist, born in 1948 in Berlin. He is currently a Senior Researcher at the Numerical Harmonic Analysis Group of the University of Vienna.

Work

After completing his PhD in microlocal analysis at the University of Nice in 1978 under the supervision of Jacques Chazarain, de Gosson soon became fascinated by Jean Leray's Lagrangian analysis. Under Leray's tutorship de Gosson completed a Habilitation à Diriger des Recherches en Mathématiques at the University of Paris 6. During this period he specialized in the study of the Leray–Maslov index and in the theory of the metaplectic group, and their applications to mathematical physics. In 1998 de Gosson met Basil Hiley, who triggered his interest in conceptual question in quantum mechanics. Basil Hiley wrote a foreword to de Gosson's book The Principles of Newtonian and Quantum Mechanics.
After having spent several years in Sweden as Associate Professor and Professor in Sweden, de Gosson was appointed in 2006 at the Numerical Harmonic Analysis Group of the University of Vienna, created by Hans Georg Feichtinger. He currently works in symplectic methods in harmonic analysis, and on conceptual questions in quantum mechanics, often in collaboration with Basil Hiley.

Visiting positions

Maurice de Gosson has held longer visiting positions at Yale University
, University of Colorado in Boulder
, University of Potsdam, Albert-Einstein-Institut, Max-Planck-Institut für Mathematik, Université Paul Sabatier, Jacobs Universität

The symplectic camel

Maurice de Gosson was the first to prove that Mikhail Gromov's symplectic non-squeezing theorem allowed the derivation of a classical uncertainty principle formally totally similar to the Robertson–Schrödinger uncertainty relations. This rather unexpected result was discussed in the media.

Quantum blobs

In 2003, Gosson introduced the notion of quantum blobs, which are defined in terms of symplectic capacities and are invariant under canonical transformations. Shortly after, he showed that Gromov's non-squeezing theorem allows a coarse graining of phase space by such quantum blobs, each described by a mean momentum and a mean position:
and
Their invariance property distinguishes de Gosson's quantum blobs from the "quantum cells" known in thermodynamics, which are units of phase space with a volume of the size of Planck's constant h to the power of 3.
Together with G. Dennis and Basil Hiley, de Gosson laid out examples of how the quantum blob can be seen as a "blow-up" of a particle in phase space. To demonstrate this, they picking up on “Fermi's trick” which allows to identify an arbitrary wavefunction as a stationary state for some Hamiltonian operator. They showed that this blow-up requires internal energy that comes from the particle itself, involving the kinetic energy and David Bohm's quantum potential.
In the classical limit, the quantum blob becomes a point particle.

Influence

De Gosson's notion of quantum blobs has given rise to a proposal for a new formulation of quantum mechanics, which is derived from postulates on quantum-blob-related limits to the extent and localization of quantum particles in phase space; this proposal is strengthened by the development of a phase space approach that applies to both quantum and classical physics, where a quantum-like evolution law for observables can be recovered from the classical Hamiltonian in a non-commutative phase space, where x and p are c-numbers, not operators.

Publications

Books