Metre


The metre or meter is the base unit of length in the International System of Units. The SI unit symbol is m.
The metre is defined as the length of the path travelled by light in a vacuum in of a second.
The metre was originally defined in 1793 as one ten-millionth of the distance from the equator to the North Pole along a great circle, so the Earth's circumference is approximately km. In 1799, the metre was redefined in terms of a prototype metre bar. In 1960, the metre was redefined in terms of a certain number of wavelengths of a certain emission line of krypton-86. The current definition was adopted in 1983 and slightly updated in 2019.

Spelling

Metre is the standard spelling of the metric unit for length in nearly all English-speaking nations except the United States and the Philippines, which use meter. Other Germanic languages, such as German, Dutch, and the Scandinavian languages likewise spell the word meter.
Measuring devices are spelled "-meter" in all variants of English. The suffix "-meter" has the same Greek origin as the unit of length.

Etymology

The etymological roots of metre can be traced to the Greek verb μετρέω and noun μέτρον , which were used for physical measurement, for poetic metre and by extension for moderation or avoiding extremism. This range of uses is also found in Latin, French, English and other languages. The motto ΜΕΤΡΩ ΧΡΩ in the seal of the International Bureau of Weights and Measures, which was a saying of the Greek statesman and philosopher Pittacus of Mytilene and may be translated as "Use measure!", thus calls for both measurement and moderation. The use of the word metre in English began at least as early as 1797.

History of definition

In 1671 Jean Picard measured the length of a "seconds pendulum" at the Paris observatory. He found the value of 440.5 lines of the Toise of Châtelet which had been recently renewed. He proposed a universal toise which was twice the length of the seconds pendulum. However, it was soon discovered that the length of a seconds pendulum varies from place to place: French astronomer Jean Richer had measured the 0.3% difference in length between Cayenne and Paris.
Jean Richer and Giovanni Domenico Cassini measured the parallax of Mars between Paris and Cayenne in French Guiana when Mars was at its closest to Earth in 1672. They arrived at a figure for the solar parallax of 9.5 arcseconds, equivalent to an Earth–Sun distance of about Earth radii. They were also the first astronomers to have access to an accurate and reliable value for the radius of Earth, which had been measured by their colleague Jean Picard in 1669 as 3269 thousand toises. Picard's geodetic observations had been confined to the determination of the magnitude of the Earth considered as a sphere, but the discovery made by Jean Richer turned the attention of mathematicians to its deviation from a spherical form. In addition to its significance for cartography, the determination of the Figure of the Earth became a problem of the highest importance in astronomy, inasmuch as the diameter of the Earth was the unit to which all celestial distances had to be referred.

Meridional definition

As a result of the French Revolution, the French Academy of Sciences charged a commission with determining a single scale for all measures. On 7 October 1790 that commission advised the adoption of a decimal system, and on 19 March 1791 advised the adoption of the term mètre, a basic unit of length, which they defined as equal to one ten-millionth of the distance between the North Pole and the Equator along the meridian through Paris. In 1793, the French National Convention adopted the proposal.
The French Academy of Sciences commissioned an expedition led by Jean Baptiste Joseph Delambre and Pierre Méchain, lasting from 1792 to 1799, which attempted to accurately measure the distance between a belfry in Dunkerque and Montjuïc castle in Barcelona at the longitude of Paris Panthéon. The expedition was fictionalised in Denis Guedj, Le Mètre du Monde. Ken Alder wrote factually about the expedition in The Measure of All Things: the seven year odyssey and hidden error that transformed the world. This portion of the Paris meridian, was to serve as the basis for the length of the half meridian connecting the North Pole with the Equator. From 1801 to 1812 France adopted this definition of the metre as its official unit of length based on results from this expedition combined with those of the Geodesic Mission to Peru. The latter was related by Larrie D. Ferreiro in Measure of the Earth: The Enlightenment Expedition that Reshaped Our World.
, 1817.
A more accurate determination of the Figure of the Earth would soon result from the measurement of the Struve Geodetic Arc and would have given another value for the definition of this standard of length. This did not invalidate the metre but highlighted that progresses in science would allow better measurement of Earth's size and shape. After the July Revolution of 1830 the metre became the definitive French standard from 1840. At that time it had already been adopted by Ferdinand Rudolph Hassler for the U.S Survey of the Coast.
"The unit of length to which all distances measured in the Coast Survey are referred is the French metre, an authentic copy of which is preserved in the archives of the Coast Survey Office. It is the property of the American Philosophical Society, to whom it was presented by Mr. Hassler, who had received it from Tralles, a member of the French Committee charged with the construction of the standard metre by comparison with the toise, which had served as unit of length in the measurement of the meridional arcs in France and Peru. It possesses all the authenticity of any original metre extant, bearing not only the stamp of the Committee but also the original mark by which it was distiguished from the other bars during the operation of standarding. It is always designated as the Committee metre".
In 1830 President Andrew Jackson mandated Ferdinand Rudolf Hassler to work out new standards for all U.S. states. According to the decision of the Congress of the United States, the British Parlementary Standard from 1758 was introduced as the unit of length. Another geodesist with metrology skills was to play a pivotal role in the process of internationalization of weights and measures, Carlos Ibáñez e Ibáñez de Ibero who would become the first president of both the International Geodetic Association and the International Committee for Weights and Measures.

International prototype metre bar

In 1867 at the second general conference of the International Association of Geodesy held in Berlin, the question of an international standard unit of length was discussed in order to combine the measurements made in different countries to determine the size and shape of the Earth. The conference recommended the adoption of the metre in replacement of the toise and the creation of an international metre commission, according to the proposal of Johann Jacob Baeyer, Adolphe Hirsch and Carlos Ibáñez e Ibáñez de Ibero who had devised two geodetic standards calibrated on the metre for the map of Spain. Measurement traceability between the toise and the metre was ensured by comparison of the Spanish standard with the standard devised by Borda and Lavoisier for the survey of the meridian arc connecting Dunkirk with Barcelona.
A member of the Preparatory Committee since 1870 and Spanish representative at the Paris Conference in 1875, Carlos Ibáñez e Ibáñez de Ibero intervened with the French Academy of Sciences to rally France to the project to create an International Bureau of Weights and Measures equipped with the scientific means necessary to redefine the units of the metric system according to the progress of sciences.
with variant of Repsold pendulum|alt=
In the 1870s and in light of modern precision, a series of international conferences was held to devise new metric standards. The Metre Convention of 1875 mandated the establishment of a permanent International Bureau of Weights and Measures to be located in Sèvres, France. This new organisation was to construct and preserve a prototype metre bar, distribute national metric prototypes, and maintain comparisons between them and non-metric measurement standards. The organisation distributed such bars in 1889 at the first General Conference on Weights and Measures, establishing the International Prototype Metre as the distance between two lines on a standard bar composed of an alloy of 90% platinum and 10% iridium, measured at the melting point of ice.
The comparison of the new prototypes of the metre with each other and with the Committee metre involved the development of special measuring equipment and the definition of a reproducible temperature scale. The BIPM's thermometry work led to the discovery of special alloys of iron-nickel, in particular invar, for which its director, the Swiss physicist Charles-Edouard Guillaume, was granted the Nobel Prize for physics in 1920.
As Carlos Ibáñez e Ibáñez de Ibero stated, the progress of metrology combined with those of gravimetry through improvement of Kater's pendulum led to a new era of geodesy. If precision metrology had needed the help of geodesy, the latter could not continue to prosper without the help of metrology. Indeed, how to express all the measurements of terrestrial arcs as a function of a single unit, and all the determinations of the force of gravity with the pendulum, if metrology had not created a common unit, adopted and respected by all civilized nations, and if in addition one had not compared, with great precision, to the same unit all the standards for measuring geodesic bases, and all the pendulum rods that had hitherto been used or would be used in the future? Only when this series of metrological comparisons would be finished with a probable error of a thousandth of a millimetre would geodesy be able to link the works of the different nations with one another, and then proclaim the result of the last measurement of the Globe. As the figure of the Earth could be inferred from variations of the seconds pendulum length with latitude, the United States Coast Survey instructed Charles Sanders Peirce in the spring of 1875 to proceed to Europe for the purpose of making pendulum experiments to chief initial stations for operations of this sort, in order to bring the determinations of the forces of gravity in America into communication with those of other parts of the world; and also for the purpose of making a careful study of the methods of pursuing these researches in the different countries of Europe. In 1886 the association of geodesy changed name for the International Geodetic Association, which Carlos Ibáñez e Ibáñez de Ibero presided up to his death in 1891. During this period the International Geodetic Association gained worldwide importance with the joining of United States, Mexico, Chile, Argentina and Japan.
Efforts to supplement the various national surveying systems, which begun in the 19th century with the foundation of the Mitteleuropäische Gradmessung, resulted in a series of global ellipsoids of the Earth which would later lead to develop the World Geodetic System. Nowadays the practical realisation of the metre is possible everywhere thanks to the atomic clocks embedded in GPS satellites.

Wavelength definition

In 1873, James Clerk Maxwell suggested that light emitted by an element be used as the standard both for the meter and for the second. These two quantities could then be used to define the unit of mass.
In 1893, the standard metre was first measured with an interferometer by Albert A. Michelson, the inventor of the device and an advocate of using some particular wavelength of light as a standard of length. By 1925, interferometry was in regular use at the BIPM. However, the International Prototype Metre remained the standard until 1960, when the eleventh CGPM defined the metre in the new International System of Units as equal to wavelengths of the orange-red emission line in the electromagnetic spectrum of the krypton-86 atom in a vacuum.

Speed of light definition

To further reduce uncertainty, the 17th CGPM in 1983 replaced the definition of the metre with its current definition, thus fixing the length of the metre in terms of the second and the speed of light:
This definition fixed the speed of light in vacuum at exactly metres per second. An intended by-product of the 17th CGPM's definition was that it enabled scientists to compare lasers accurately using frequency, resulting in wavelengths with one-fifth the uncertainty involved in the direct comparison of wavelengths, because interferometer errors were eliminated. To further facilitate reproducibility from lab to lab, the 17th CGPM also made the iodine-stabilised helium–neon laser "a recommended radiation" for realising the metre. For the purpose of delineating the metre, the BIPM currently considers the HeNe laser wavelength,, to be with an estimated relative standard uncertainty of. This uncertainty is currently one limiting factor in laboratory realisations of the metre, and it is several orders of magnitude poorer than that of the second, based upon the caesium fountain atomic clock. Consequently, a realisation of the metre is usually delineated today in labs as wavelengths of helium-neon laser light in a vacuum, the error stated being only that of frequency determination. This bracket notation expressing the error is explained in the article on measurement uncertainty.
Practical realisation of the metre is subject to uncertainties in characterising the medium, to various uncertainties of interferometry, and to uncertainties in measuring the frequency of the source. A commonly used medium is air, and the National Institute of Standards and Technology has set up an online calculator to convert wavelengths in vacuum to wavelengths in air. As described by NIST, in air, the uncertainties in characterising the medium are dominated by errors in measuring temperature and pressure. Errors in the theoretical formulas used are secondary. By implementing a refractive index correction such as this, an approximate realisation of the metre can be implemented in air, for example, using the formulation of the metre as wavelengths of helium–neon laser light in vacuum, and converting the wavelengths in a vacuum to wavelengths in air. Air is only one possible medium to use in a realisation of the metre, and any partial vacuum can be used, or some inert atmosphere like helium gas, provided the appropriate corrections for refractive index are implemented.
The metre is defined as the path length travelled by light in a given time and practical laboratory length measurements in metres are determined by counting the number of wavelengths of laser light of one of the standard types that fit into the length, and converting the selected unit of wavelength to metres. Three major factors limit the accuracy attainable with laser interferometers for a length measurement:
Of these, the last is peculiar to the interferometer itself. The conversion of a length in wavelengths to a length in metres is based upon the relation
which converts the unit of wavelength λ to metres using c, the speed of light in vacuum in m/s. Here n is the refractive index of the medium in which the measurement is made, and f is the measured frequency of the source. Although conversion from wavelengths to metres introduces an additional error in the overall length due to measurement error in determining the refractive index and the frequency, the measurement of frequency is one of the most accurate measurements available.

Timeline

Basis of definitionDateAbsolute
uncertainty
Relative
uncertainty
part of the quadrant along the meridian, measurement by Delambre and Méchain 1795500–100μm
First prototype History of the metre#Mètre des Archives platinum bar standard179950–10μm
Platinum-iridium bar at melting point of ice 1889
Platinum-iridium bar at melting point of ice, atmospheric pressure, supported by two rollers 1927n.a.n.a.
Hyperfine atomic transition; wavelengths of light from a specified transition in krypton-86 19604nm
Length of the path travelled by light in a vacuum in second 19830.1nm

SI prefixed forms of metre

es are often employed to denote decimal multiples and submultiples of the metre, as shown in the table below. As indicated in the table, some are commonly used, while others are not. Long distances are usually expressed in km, astronomical units, light-years, or parsecs, rather than in Mm, Gm, Tm, Pm, Em, Zm or Ym; "30 cm", "30 m", and "300 m" are more common than "3 dm", "3 dam", and "3 hm", respectively.
The terms micron and millimicron are often used instead of micrometre and nanometre, but this practice is officially discouraged.

Equivalents in other units

Within this table, "inch" and "yard" mean "international inch" and "international yard" respectively, though approximate conversions in the left column hold for both international and survey units.
One metre is exactly equivalent to inches and to yards.
A simple mnemonic aid exists to assist with conversion, as three "3"s:
The ancient Egyptian cubit was about 0.5m. Scottish and English definitions of the ell were 941mm and 1143mm respectively. The ancient Parisian toise was slightly shorter than 2m and was standardised at exactly 2m in the mesures usuelles system, such that 1m was exactly toise. The Russian verst was 1.0668km. The Swedish mil was 10.688km, but was changed to 10km when Sweden converted to metric units.