Michael Tsapatsis


Michael Tsapatsis is an American chemical engineer and materials scientist. Tsapatsis is the 36th Bloomberg Distinguished Professor at Johns Hopkins University in the Department of Chemical and Biomolecular Engineering. Prior to this position he was the Amundson Chair, Professor, and McKnight Presidential Endowed Chair in the Department of Chemical Engineering and Materials Science at the University of Minnesota. Prior to his appointment at the University of Minnesota, Tsapatsis was an Associate Professor at the University of Massachusetts Amherst.
He is well-recognized for his wide-ranging research in zeolite synthesis, especially his contributions to the design of hierarchical zeolite structures and their applications in catalysis and membrane separations. According to Web of Science, he has produced over 250 published works that have been cited over 12,500 times, with an h-index of 62 as of February 23, 2018. He was elected to the National Academy of Engineering in 2015.

Early life & education

Michael Tsapatsis was born in 1965 in Athens, Greece. He received his diploma in chemical engineering at the University of Patras, Greece, in 1988. Working under the supervision of G.R. Gavalas at the California Institute of Technology, Tsapatsis received his M.S. in chemical engineering in 1991 and his Ph.D. in chemical engineering in 1994. His dissertation was titled "Composite inorganic membranes for gas separations: Chemical vapor deposition of hydrogen permselective oxide membranes and preparation of supported zeolite NaA films." Tsapatsis completed post-doctoral training with Mark E. Davis at the California Institute of Technology. He subsequently joined the faculty at the University of Massachusetts Amherst in 1994. Tsapatsis and his wife, Efronisi, have two children.

Contributions to Chemical Engineering

Tsapatsis is internationally recognized for his outstanding contributions and achievements as a chemical engineer. His early work as an Assistant Professor at the University of Massachusetts up to recent research at the University of Minnesota addressed the preparation of zeolite films as membranes for molecular separation. Over a decade of work addressing the challenge of disintegration of fabricated sheets eventually led to multiple discoveries allowing for the preparation of "layered nanosheets" that are just a few silicon atoms thick. Fundamental research alongside engineering and process development has led to advances in separation with membranes for applications including xylene separation, biofuels purification, and sour gas cleaning.
Tsapatsis has also developed hierarchical zeolite particles with unique properties of value to chemical properties that utilize adsorption and catalysis. In 2011, he discovered a synthesis method for preparing nanosheets of microporous materials that could be organized as sheets for filtration application. In 2012, Tsapatsis led a team of researchers to develop a hierarchical zeolite nanoparticle called Self-Pillared Pentasil. Consisting of nanoscale pores, SPP was characterized and shown to have tunable properties similar to conventional zeolites used in gas separation and fuel refining, but integrated large pores provided enhanced diffusion capability for molecular transport.
The breadth of accomplishments extends beyond zeolite synthesis by developing applications in structured catalysts, oriented molecular sieve films, and molecular sieve/polymer nanocomposites for membrane applications, and adsorbents for commercial cleaning processes. He has been part of catalysis research teams that have developed new processes to prepare renewable chemicals including isoprene, p-xylene, and bio-derived surfactants. His zeolites have also been selected for enhancing existing applications including energy-demanding processes such as ethanol dehydration.

Awards, Honors, and Professional Service

For his outstanding research and education efforts, Tsapatsis has received numerous awards including:
In addition to being elected a member of the National Academy of Engineering in 2015, he is also a fellow of the American Association for the Advancement of Science and in 2013 was elected as a council member of the International Zeolite Association.
Tsapatsis is well known for his expertise in zeolite synthesis with invitations to present over 150 lectures including the Dow Lecture, the ExxonMobil Lecture, the S.V. Sotirchos Lecture, and the G.C.A. Schuit Lectures. He has also served the broader scientific community as an editor for the journal Microporous and Mesoporous Materials, the official journal of the International Zeolite Association. He has also a member of the editorial board for the journal Annual Review of Chemical and Biomolecular Engineering and an advisory board member of Industrial and Engineering Chemistry Research.

Key publications

Michael Tsapatsis has authored numerous journal articles describing significant advances in zeolite synthesis, materials science, and chemical engineering which includes but is not limited to: