Micrococcal nuclease


Micrococcal nuclease is an endo-exonuclease that preferentially digests single-stranded nucleic acids. The rate of cleavage is 30 times greater at the 5' side of A or T than at G or C and results in the production of mononucleotides and oligonucleotides with terminal 3'-phosphates. The enzyme is also active against double-stranded DNA and RNA and all sequences will be ultimately cleaved.

Characteristics

The enzyme has a molecular weight of 16.9kDa.
The pH optimum is reported as 9.2. The enzyme activity is strictly dependent on Ca2+ and the pH optimum varies according to Ca2+ concentration. The enzyme is therefore easily inactivated by EGTA.

Structure

The 3-dimensional structure of micrococcal nuclease was solved very early in the history of protein crystallography, in 1969, deposited as now-obsolete Protein Data Bank file 1SNS. Higher-resolution, more recent crystal structures are available for the apo form as Protein Data Bank file 1SNO: and for the thymidine-diphosphate-inhibited form as Protein Data Bank file 3H6M: or 1SNC: . As seen in the ribbon diagram above, the nuclease molecule has 3 long alpha helices and a 5-stranded, barrel-shaped beta sheet, in an arrangement known as the OB-fold as classified in the SCOP database.

Applications