Models of DNA evolution
A number of different Markov models of DNA sequence evolution have been proposed. These substitution models differ in terms of the parameters used to describe the rates at which one nucleotide replaces another during evolution. These models are frequently used in molecular phylogenetic analyses. In particular, they are used during the calculation of likelihood of a tree and they are used to estimate the evolutionary distance between sequences from the observed differences between the sequences.
Introduction
These models are phenomenological descriptions of the evolution of DNA as a string of four discrete states. These Markov models do not explicitly depict the mechanism of mutation nor the action of natural selection. Rather they describe the relative rates of different changes. For example, mutational biases and purifying selection favoring conservative changes are probably both responsible for the relatively high rate of transitions compared to transversions in evolving sequences. However, the Kimura model described below only attempts to capture the effect of both forces in a parameter that reflects the relative rate of transitions to transversions.Evolutionary analyses of sequences are conducted on a wide variety of time scales. Thus, it is convenient to express these models in terms of the instantaneous rates of change between different states. If we are given a starting state at one position, the model's Q matrix and a branch length expressing the expected number of changes to have occurred since the ancestor, then we can derive the probability of the descendant sequence having each of the four states. The mathematical details of this transformation from rate-matrix to probability matrix are described in the mathematics of substitution models section of the substitution model page. By expressing models in terms of the instantaneous rates of change we can avoid estimating a large numbers of parameters for each branch on a phylogenetic tree.
The models described on this page describe the evolution of a single site within a set of sequences. They are often used for analyzing the evolution of an entire locus by making the simplifying assumption that different sites evolve independently and are identically distributed. This assumption may be justifiable if the sites can be assumed to be evolving neutrally. If the primary effect of natural selection on the evolution of the sequences is to constrain some sites, then models of among-site rate-heterogeneity can be used. This approach allows one to estimate only one matrix of relative rates of substitution, and another set of parameters describing the variance in the total rate of substitution across sites.
DNA evolution as a continuous-time Markov chain
Continuous-time Markov chains
Continuous-time Markov chains have the usual transition matriceswhich are, in addition, parameterized by time,. Specifically, if are the states, then the transition matrix
Example: We would like to model the substitution process in DNA sequences in a continuous-time fashion. The corresponding transition matrices will look like:
where the top-left and bottom-right 2 × 2 blocks correspond to transition probabilities and the top-right and bottom-left 2 × 2 blocks corresponds to transversion probabilities.
Assumption: If at some time, the Markov chain is in state, then the probability that at time, it will be in state depends only upon, and. This then allows us to write that probability as.
Theorem: Continuous-time transition matrices satisfy:
Note: There is here a possible confusion between two meanings of the word transition. In the context of Markov chains, transition is the general term for the change between two states. In the context of nucleotide changes in DNA sequences, transition is a specific term for the exchange between either the two purines or the two pyrimidines . By contrast, an exchange between one purine and one pyrimidine is called a transversion.
Deriving the dynamics of substitution
Consider a DNA sequence of fixed length m evolving in time by base replacement. Assume that the processes followed by the m sites are Markovian independent, identically distributed and that the process is constant over time. For a particular site, letbe the set of possible states for the site, and
their respective probabilities at time. For two distinct, let be the transition rate from state to state. Similarly, for any, let the total rate of change from be
The changes in the probability distribution for small increments of time are given by
In other words,, the frequency of 's at time is equal to the frequency at time minus the frequency of the lost 's plus the frequency of the newly created 's.
Similarly for the probabilities, and. These equations can can be written compactly as
where
is known as the rate matrix. Note that, by definition, the sum of the entries in each row of is equal to zero. It follows that
For a stationary process, where does not depend on time t, this differential equation can be solved. First,
where denotes the exponential of the matrix. As a result,
Ergodicity
If the Markov chain is irreducible, i.e. if it is always possible to go from a state to a state , then it is also ergodic. As a result, it has a unique stationary distribution, where corresponds to the proportion of time spent in state after the Markov chain has run for an infinite amount of time. In DNA evolution, under the assumption of a common process for each site, the stationary frequencies correspond to equilibrium base compositions. Indeed, note that since the stationary distribution satisfies, we see that when the current distribution is the stationary distribution we haveIn other words, the frequencies of do not change.
Time reversibility
Definition: A stationary Markov process is time reversible if the amount of change from state to is equal to the amount of change from to,. This means that:Not all stationary processes are reversible, however, most commonly used DNA evolution models assume time reversibility, which is considered to be a reasonable assumption.
Under the time reversibility assumption, let, then it is easy to see that:
Definition The symmetric term is called the exchangeability between states and. In other words, is the fraction of the frequency of state that is the result of transitions from state to state.
Corollary The 12 off-diagonal entries of the rate matrix, can be completely determined by 9 numbers; these are: 6 exchangeability terms and 3 stationary frequencies,.
Scaling of branch lengths
By comparing extant sequences, one can determine the amount of sequence divergence. This raw measurement of divergence provides information about the number of changes that have occurred along the path separating the sequences. The simple count of differences between sequences will often underestimate the number of substitution because of multiple hits. Trying to estimate the exact number of changes that have occurred is difficult, and usually not necessary. Instead, branch lengths in phylogenetic analyses are usually expressed in the expected number of changes per site. The path length is the product of the duration of the path in time and the mean rate of substitutions. While their product can be estimated, the rate and time are not identifiable from sequence divergence.The descriptions of rate matrices on this page accurately reflect the relative magnitude of different substitutions, but these rate matrices are not scaled such that a branch length of 1 yields one expected change. This scaling can be accomplished by multiplying every element of the matrix by the same factor, or simply by scaling the branch lengths. If we use the β to denote the scaling factor, and ν to denote the branch length measured in the expected number of substitutions per site then βν is used in the transition probability formulae below in place of μt. Note that ν is a parameter to be estimated from data, and is referred to as the branch length, while β is simply a number that can be calculated from the rate matrix.
The value of β can be found by forcing the expected rate of flux of states to 1. The diagonal entries of the rate-matrix represent -1 times the rate of leaving each state. For [|time-reversible] models, we know the equilibrium state frequencies. Thus we can find the expected rate of change by calculating the sum of flux out of each state weighted by the proportion of sites that are expected to be in that class. Setting β to be the reciprocal of this sum will guarantee that scaled process has an expected flux of 1:
For example, in the Jukes-Cantor, the scaling factor would be 4/ because the rate of leaving each state is 3μ/4.
Most common models of DNA evolution
JC69 model (Jukes and Cantor 1969)
JC69, the Jukes and Cantor 1969 model, is the simplest substitution model. There are several assumptions. It assumes equal base frequencies and equal mutation rates. The only parameter of this model is therefore, the overall substitution rate. As previously mentioned, this variable becomes a constant when we normalize the mean-rate to 1.When branch length,, is measured in the expected number of changes per site then:
It is worth noticing that what stands for sum of any column of matrix multiplied by time and thus means expected number of substitutions in time for each particular site when the rate of substitution equals.
Given the proportion of sites that differ between the two sequences the Jukes-Cantor estimate of the evolutionary distance between two sequences is given by
The in this formula is frequently referred to as the -distance. It is a sufficient statistic for calculating the Jukes-Cantor distance correction, but is not sufficient for the calculation of the evolutionary distance under the more complex models that follow.
K80 model (Kimura 1980)
K80, the Kimura 1980 model, often referred to as Kimura's two parameter model, distinguishes between transitions and transversions. In Kimura's original description of the model the α and β were used to denote the rates of these types of substitutions, but it is now more common to set the rate of transversions to 1 and use κ to denote the transition/transversion rate ratio. The K80 model assumes that all of the bases are equally frequent.Rate matrix with columns corresponding to,,, and, respectively.
The Kimura two-parameter distance is given by:
where p is the proportion of sites that show transitional differences and
q is the proportion of sites that show transversional differences.
K81 model (Kimura 1981)
K81, the Kimura 1981 model, often called Kimura's three parameter model or the Kimura three substitution type model, has distinct rates for transitions and two distinct types of transversions. The two transversion types are those that conserve the weak/strong properties of the nucleotides and those that conserve the amino/keto properties of the nucleotides. The K81 model assumes that all equilibrium base frequencies are equal.Rate matrix with columns corresponding to,,, and, respectively.
The K81 model is used much less often than the K80 model for distance estimation and it is seldom the best-fitting model in maximum likelihood phylogenetics. Despite these facts, the K81 model has continued to be studied in the context of mathematical phylogenetics. One important property is the ability to perform a Hadamard transform assuming the site patterns were generated on a tree with nucleotides evolving under the K81 model.
When used in the context of phylogenetics the Hadamard transform provides an elegant and fully invertible means to calculate expected site pattern frequencies given a set of branch lengths. Unlike many maximum likelihood calculations, the relative values for,, and can vary across branches and the Hadamard transform can even provide evidence that the data do not fit a tree. The Hadamard transform can also be combined with a wide variety of methods to accommodate among-sites rate heterogeneity, using continuous distributions rather than the discrete approximations typically used in maximum likelihood phylogenetics.
F81 model (Felsenstein 1981)
F81, the Felsenstein's 1981 model, is an extension of the JC69 model in which base frequencies are allowed to vary from 0.25Rate matrix:
When branch length, ν, is measured in the expected number of changes per site then:
HKY85 model (Hasegawa, Kishino and Yano 1985)
HKY85, the Hasegawa, Kishino and Yano 1985 model, can be thought of as combining the extensions made in the Kimura80 and Felsenstein81 models. Namely, it distinguishes between the rate of transitions and transversions, and it allows unequal base frequencies.Rate matrix
If we express the branch length, ν in terms of the expected number of changes per site then:
and formula for the other combinations of states can be obtained by substituting in the appropriate base frequencies.
T92 model (Tamura 1992)
T92, the Tamura 1992 model, is a mathematical method developed to estimate the number of nucleotide substitutions per site between two DNA sequences, by extending Kimura's two-parameter method to the case where a G+C content bias exists. This method will be useful when there are strong transition-transversion and G+C-content biases, as in the case of Drosophila mitochondrial DNA.T92 involves a single, compound base frequency parameter
As T92 echoes the Chargaff's second parity rule — pairing nucleotides do have the same frequency on a single DNA strand, G and C on the one hand, and A and T on the other hand — it follows that the four base frequences can be expressed as a function of
and
Rate matrix
The evolutionary distance between two DNA sequences according to this model is given by
where and is the G+C content.
TN93 model (Tamura and Nei 1993)
TN93, the Tamura and Nei 1993 model, distinguishes between the two different types of transition; i.e. is allowed to have a different rate to. Transversions are all assumed to occur at the same rate, but that rate is allowed to be different from both of the rates for transitions.TN93 also allows unequal base frequencies.
Rate matrix
GTR model (Tavaré 1986)
GTR, the Generalised time-reversible model of Tavaré 1986, is the most general neutral, independent, finite-sites, time-reversible model possible. It was first described in a general form by Simon Tavaré in 1986.GTR parameters consist of an equilibrium base frequency vector,, giving the frequency at which each base occurs at each site, and the rate matrix
Where
are the transition rate parameters.
Therefore, GTR requires 6 substitution rate parameters, as well as 4 equilibrium base frequency parameters. However, this is usually eliminated down to 9 parameters plus, the overall number of substitutions per unit time. When measuring time in substitutions only 8 free parameters remain.
In general, to compute the number of parameters, one must count the number of entries above the diagonal in the matrix, i.e. for n trait values per site, and then add n for the equilibrium base frequencies, and subtract 1 because is fixed. One gets
For example, for an amino acid sequence, one would find there are 209 parameters. However, when studying coding regions of the genome, it is more common to work with a codon substitution model. There are codons, but the rates for transitions between codons which differ by more than one base is assumed to be zero. Hence, there are parameters.