Monocular
A monocular is a modified refracting telescope used to magnify the images of distant objects by passing light through a series of lenses and usually prisms, the application of prisms resulting in a lightweight, compact telescope. Volume and weight are less than half those of binoculars of similar optical properties, making a monocular easy to carry, and also proportionally less expensive. Monoculars produce 2-dimensional images, while binoculars add perception of depth, assuming one has normal binocular vision.
Monoculars are ideally suited to those with vision in only one eye, or where compactness and low weight are important. Monoculars are also sometimes preferred where difficulties occur using both eyes through binoculars because of significant eye variation or poor vision in one eye.
A monocular with a straight optical path is relatively long; prisms are normally used to fold the optical path to make an instrument which is much shorter.
Visually impaired people may use monoculars to see objects at distances at which people with normal vision do not have difficulty, e.g., to read text on a chalkboard or projection screen. Applications for viewing more distant objects include natural history, hunting, marine and military. Compact monoculars are also used in art galleries and museums to obtain a closer view of exhibits.
When high magnification, a bright image, and good resolution of distant images are required, a relatively larger instrument is preferred, often mounted on a tripod. A smaller pocket-sized "pocket scope" can be used for less stringent applications. These comments are quantified below.
Whereas there is a huge range of binoculars on the world market, monoculars are less widely available and with a limited choice in the top quality bracket, with some traditionally very high quality optical manufacturers not offering monoculars at all. Today, most monoculars are manufactured in Japan, China, Russia and Germany, with China offering more product variety than most. Prices range widely, from the highest specification designs listed at over £300 down to "budget" offerings at under £10..
Monocular sizes
As with binoculars and telescopes, monoculars are primarily defined by two parameters: magnification and objective lens diameter, for example, 8×30 where 8 is the magnification and 30 is the objective lens diameter in mm. An 8× magnification makes the distant object appear to be 8 times larger at the eye. Contemporary monoculars are typically compact and most normally within a range of 4× magnification to 10×, although specialized units outside these limits are available. Variable magnification or zoom is sometimes provided, but has drawbacks and is not normally found on the top quality monoculars. Objective lens diameter is typically in the range 20mm to 42mm. Care is needed in interpreting some monocular specifications where numerical values are applied loosely and inaccurately—e.g. "39×95", which on a small cheap monocular is more likely to refer to the physical dimensions than the optical parameters.As with binoculars, possibly the most common and popular magnification for most purposes is 8×. This represents a usable magnification in many circumstances and is reasonably easy to hold steady without a tripod or monopod. At this magnification, the field of view is relatively wide, making it easier to locate and follow distant objects. For viewing at longer distances, 10× or 12× is preferable if the user is able to hold the monocular steady. However, increasing magnification will compromise the field of view and the relative brightness of the object. These and other considerations are major factors influencing the choice of magnification and objective lens diameter. Although very high numerical magnification sounds impressive on paper, in reality, for a pocket monocular it is rarely a good choice because of the very narrow field of view, poor image brightness and great difficulty in keeping the image still when hand holding. Most serious users will eventually come to realise why 8× or 10× are so popular, as they represent possibly the best compromise and are the magnifications most commonly adopted in the very highest quality field monoculars.
Where a monocular ends and a telescope starts is debatable but a telescope is normally used for high magnifications and with correspondingly larger objective lens diameter. A telescope will be significantly heavier, more bulky and much more expensive than a monocular and due to the high magnifications, will normally need a tripod, telescopes used for astronomy typically have inverted images. Most popular monocular sizes mimic popular binoculars – e.g. 7×25, 8×20, 8×30, 8×42, 10×42.
Design
Much of the basic design considerations and related parameters are the same as for binoculars and are covered in that entry, but some expanded comments have been added where appropriate:- Prism type – porro or roof
- Lens & prism coating
- Exit pupil
- Twilight factor
- Transmittance
- Field of view.
- Water/fog proofing
- General construction – material, types of body coating
- Armoured body protection
- Lens protection/covers
- Eye relief
Two additional aspects, which are particularly relevant in the context of monoculars are:
- Focusing mechanism
- A large knurled focusing ring around the body of the monocular
- A small focusing ring close to the eyepiece
- A small external focusing wheel alongside and above the monocular
- A small focusing lever
- A sliding focus button
- A toggle focus mechanism on top of the monocular
- A large knurled ring surrounding the objective lens
- "Dual focus" where there are two focusing rings.
The small ring near the eyepiece also usually needs two hands to operate and in some designs can interfere with the twist-up eye cup. Being small, it can also be less convenient to operate, especially wearing gloves. The degree of twist from closest focus to infinity varies between manufacturers. Some use a very small twist whereas others use a full turn or more. The small degree of twist gives a very fast focus but can be overly sensitive and in some designs too stiff to use single-handed. A full turn is a practical compromise.
A focusing wheel tends not to be used on top quality monoculars but is particularly popular on budget offerings from China. Although it makes the monocular more bulky, it does give very convenient focusing with one hand and is particularly fast and smooth, which is necessary in circumstances where quick, accurate changes of focus are important.
A focusing lever is not common but is used, for example, on the Opticron Trailfinder. This mechanism provides very quick focusing while retaining compactness but can be stiff and overly sensitive to use and again ideally needs two hands.
Minox and some others use a slider button, rather than a lever, on low magnification, ultra-compact designs, pushed side to side, which is also fast but rather sensitive.
Toggle focus is very rarely used. It provides a one-handed focus mechanism in a relatively large toggle, making it quick and easy to operate "in the field" with gloves but can be rather over-sensitive and difficult to fine tune.
The knurled ring around the objective lens appears to be a unique feature of the Minox 8×25 Macroscope and claims to provide quick focusing.
Some low-budget entry-level monoculars from China claim "dual focusing", which means focusing by means of twisting either the main body of the monocular, and/or the smaller ring near the eyepiece. Quite why dual focusing is felt necessary on a monocular is questionable but could be for marketing reasons; there is no real technical benefit with such a system, which is never found on the top-quality monoculars from manufacturers like Opticron, Leica and Zeiss.
- Zoom or variable magnification
Some examples of current monoculars by specification
Interpreting product specifications
As mentioned previously, product specifications can sometimes be misleading, confusing or incorrect values stated. Such inaccuracies are more commonly found on budget items but have also sometimes been seen from some brand leaders. For those not experienced in interpreting such specifications, it is always wise to try out the item before buying wherever possible. Some of the descriptors needing particular care with include:- Basic size. As mentioned earlier, examples are sometimes seen where product physical dimensions or some other arbitrary figures are stated instead of magnification and objective lens diameter. This is very misleading and does not properly describe the product. Examples seen include a "40×60" in a compact monocular, where the objective lens diameter was actually 40mm. Another, described as "35×95", was actually a 20×40. Also, in a few cases, the overall diameter of the case surrounding the objective lens is used, rather than the lens itself, thus making it seem the objective lens is bigger than it truly is. Magnifications can also be exaggerated, an example of a claimed 16× in reality being closer to an 8x, with the number "16" probably referring to the eyepiece lens diameter. In this case, the claimed "16×52" was in reality an "8×42". Care is needed with such misleading and exaggerated specifications, more likely to be found on some very low budget items.
- "Day-night vision" or sometimes just "night vision" is another misleading descriptor commonly seen in the specification of low-end, budget monoculars as it gives the impression the item is a night-vision instrument, effective in darkness, when it clearly is not. True night vision monoculars use an electrical power source for light enhancement and are substantially more expensive and bulky than a comparable normal monocular.
- Zoom is sometimes stated where there is no zoom facility. Zoom means a variable magnification facility, as often seen on cameras, for example. The term "zoom" or misleading phrases like "power zoom" or "mega zoom" are used incorrectly when referring to a single magnification optic. Zoom values will always be two numbers separated by a hyphen and then followed by the objective lens diameter. As mentioned elsewhere in this entry, a true zoom facility can be seen on some budget monoculars but with very significant optical limitations.
- Field of view specification. This parameter is sometimes stated incorrectly and needs interpreting with care when buying an instrument without first field-testing. It is normally expressed in degrees, m@1000m or ft@1000yds. An approximate conversion from degrees to m@1000m is to multiply degrees by 17.5 which can be used as a check if both values are stated. The author has carried out fov tests on several monoculars and the results shown in the table below. Generally, the manufacturer's stated figure is accurate within a few percentages but two were considerably over-stated, one in particular by 30%. When reviewing a claimed fov value, reference can be made to the fov/magnification relationship in Design, above. This relationship represents best-in-class and so anything substantially exceeding a fov value from this plot, for a given magnification, should be treated with caution, especially in budget offerings.
claimed | actual | C/A | |
6×30 | 180 | 160 | 113 |
8×25 | 119 | 114 | 104 |
8×32 | 131 | 128 | 102 |
8×42 | 122 | 122 | 100 |
9×30 | 140 | 108 | 130 |
10×42 | 89 | 90 | 99 |
12×50 | 82 | 85 | 96 |
Specialist monoculars
Some monoculars satisfy specialist requirements and include:- Built-in compass
- Compact, folding monocular
- Night vision system
- Rangefinder/graticule
- Gallery scope
- Microscope conversion & ultra-close focus
- Built-in image stabiliser