For the simplest single bond, found in the H2 molecule, molecular orbitals can always be written in terms of two functions χiA and χiB located at the two nuclei A and B: where Ni is a normalization constant. The ground-state wavefunction for H2 at the equilibrium geometry is dominated by the configuration 2, which means that the molecular orbitalφ1 is nearly doubly occupied. The Hartree–Fock model assumes that it is doubly occupied, which leads to a total wavefunction where is the singlet spin function for two electrons. The molecular orbitals in this case φ1 are taken as sums of 1s atomic orbitals on both atoms, namely N1. Expanding the above equation into atomic orbitals yields This Hartree–Fock model gives a reasonable description of H2 around the equilibrium geometry about 0.735 Å for the bond length and 350 kJ/mol for the bond energy. This is typical for the HF model, which usually describes closed-shell systems around their equilibrium geometry quite well. At large separations, however, the terms describing both electrons located at one atom remain, which corresponds to dissociation to H+ + H−, which has a much larger energy than H + H. Therefore, the persisting presence of ionic terms leads to an unphysical solution in this case. Consequently, the HF model cannot be used to describe dissociation processes with open-shell products. The most straightforward solution to this problem is introducing coefficients in front of the different terms in Ψ1: which forms the basis for the valence bond description of chemical bonds. With the coefficients Cion and Ccov varying, the wave function will have the correct form, with Cion = 0 for the separated limit, and Cion comparable to Ccov at equilibrium. Such a description, however, uses non-orthogonal basis functions, which complicates its mathematical structure. Instead, multiconfiguration is achieved by using orthogonal molecular orbitals. After introducing an anti-bonding orbital the total wave function of H2 can be written as a linear combination of configurations built from bonding and anti-bonding orbitals: where Φ2 is the electronic configuration2. In this multiconfigurational description of the H2 chemical bond, C1 = 1 and C2 = 0 close to equilibrium, and C1 will be comparable to C2 for large separations.
A particularly important MCSCF approach is the complete active space SCF method, where the linear combination of CSFs includes all that arise from a particular number of electrons in a particular number of orbitals. For example, one might define CASSCF for the molecule NO, where the 11 valence electrons are distributed between all configurations that can be constructed from 8 molecular orbitals.
Since the number of CSFs quickly increases with the number of active orbitals, along with the computational cost, it may be desirable to use a smaller set of CSFs. One way to make this selection is to restrict the number of electrons in certain subspaces, done in the restricted active space SCF method. One could, for instance, allow only single and double excitations from some strongly occupied subset of active orbitals, or restrict the number of electrons to at most 2 in another subset of active orbitals.