In mathematics, a multicategory is a generalization of the concept of category that allows morphisms of multiple arity. If morphisms in a category are viewed as analogous to functions, then morphisms in a multicategory are analogous to functions of several variables. Multicategories are also sometimes called operads, or colored operads.
Definition
A multicategory consists of
a collection of objects;
for every finite sequence of objects and object Y, a set of morphisms from to Y; and
then there is a composite morphism from to Z. This must satisfy certain axioms:
If m = 1, Z = Y0, and g is the identity morphism for Y0, then g = f0;
if for each, nj = 1,, and fj is the identity morphism for Yj, then ; and
an associativity condition: if for each and, is a morphism from to, then are identical morphisms from to Z.
Comcategories
A comcategory is a totally ordered setO of objects, a set A of multiarrows with two functions where O% is the set of all finite ordered sequences of elements of O. The dual image of a multiarrow f may be summarized A comcategory C also has a multiproduct with the usual character of a composition operation. C is said to be associative if there holds a multiproduct axiom in relation to this operator. Any multicategory, symmetric or non-symmetric, together with a total-ordering of the object set, can be made into an equivalent comcategory. A multiorder is a comcategory satisfying the following conditions.
There is at most one multiarrow with given head and ground.
A multiarrow is a unit if its ground has one entry.
Multiorders are a generalization of partial orders, and were first introduced by Tom Leinster.
Examples
There is a multicategory whose objects are sets, where a morphism from the sets X1, X2,..., and Xn to the set Y is an n-ary function, that is a function from the Cartesian productX1 × X2 ×... × Xn to Y. There is a multicategory whose objects are vector spaces, where a morphism from the vector spaces X1, X2,..., and Xn to the vector spaceY is a multilinear operator, that is a linear transformation from the tensor productX1 ⊗ X2 ⊗... ⊗ Xn to Y. More generally, given any monoidal categoryC, there is a multicategory whose objects are objects of C, where a morphism from the C-objects X1, X2,..., and Xn to the C-object Y is a C-morphism from the monoidal product of X1, X2,..., and Xn to Y. An operad is a multicategory with one unique object; except in degenerate cases, such a multicategory does not come from a monoidal category. Examples of multiorders include pointed multisets, integer partitions, and combinatory separations. The triangles of any multiorder are morphisms of a category of contractions and a comcategory of decompositions. The contraction category for the multiorder of multimin partitions is the simplest known category of multisets.
Applications
Multicategories are often incorrectly considered to belong to higher category theory, as their original application was the observation that the operators and identities satisfied by higher categories are the objects and multiarrows of a multicategory. The study of n-categories was in turn motivated by applications in algebraic topology and attempts to describe the homotopy theory of higher dimensional manifolds. However it has mostly grown out of this motivation and is now also considered to be part of pure mathematics. The correspondence between contractions and decompositions of triangles in a multiorder allows one to construct an associative algebra called its incidence algebra. Any element that is nonzero on all unit arrows has a compositional inverse, and the Möbius function of a multiorder is defined as the compositional inverse of the zeta function in its incidence algebra.
History
Multicategories were first introduced under that name by Jim Lambek in "Deductive systems and categories II" He mentions that he was "told that multicategories have also been studied by Benabou and Cartier", and indeed Leinster opines that "the idea might have occurred to anyone who knew what both a category and a multilinear map were".