Multiverse
The multiverse is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The different universes within the multiverse are called "parallel universes," "other universes," "alternate universes," or "many worlds."
History of the concept
Early recorded examples of the idea of infinite worlds existed in the philosophy of Ancient Greek Atomism, which proposed that infinite parallel worlds arose from the collision of atoms. In the third century B.C. philosopher Chrysippus suggested that the world eternally expired and regenerated, effectively suggesting the existence of multiple universes across time. The concept of multiple universes became more defined in the middle ages.In Dublin in 1952, Erwin Schrödinger gave a lecture in which he jocularly warned his audience that what he was about to say might "seem lunatic". He said that when his equations seemed to describe several different histories, these were "not alternatives, but all really happen simultaneously". This sort of duality is called "superposition."
The American philosopher and psychologist William James used the term "multiverse" in 1895, but in a different context. The term was first used in fiction and in its current physics context by Michael Moorcock in his 1963 SF Adventures novella The Sundered Worlds.
Brief explanation
Multiple universes have been hypothesized in cosmology, physics, astronomy, religion, philosophy, transpersonal psychology, music and all kinds of literature, particularly in science fiction, comic books and fantasy. In these contexts, parallel universes are also called "alternate universes", "quantum universes", "interpenetrating dimensions", "parallel universes", "parallel dimensions", "parallel worlds", "parallel realities", "quantum realities", "alternate realities", "alternate timelines", "alternate dimensions" and "dimensional planes".The physics community has debated the various multiverse theories over time. Prominent physicists are divided about whether any other universes exist outside of our own.
Some physicists say the multiverse is not a legitimate topic of scientific inquiry. Concerns have been raised about whether attempts to exempt the multiverse from experimental verification could erode public confidence in science and ultimately damage the study of fundamental physics. Some have argued that the multiverse is a philosophical notion rather than a scientific hypothesis because it cannot be empirically falsified. The ability to disprove a theory by means of scientific experiment has always been part of the accepted scientific method. Paul Steinhardt has famously argued that no experiment can rule out a theory if the theory provides for all possible outcomes.
In 2007, Nobel laureate Steven Weinberg suggested that if the multiverse existed, "the hope of finding a rational explanation for the precise values of quark masses and other constants of the standard model that we observe in our Big Bang is doomed, for their values would be an accident of the particular part of the multiverse in which we live."
Search for evidence
Around 2010, scientists such as Stephen M. Feeney analyzed Wilkinson Microwave Anisotropy Probe data and claimed to find evidence suggesting that our universe collided with other universes in the distant past. However, a more thorough analysis of data from the WMAP and from the Planck satellite, which has a resolution three times higher than WMAP, did not reveal any statistically significant evidence of such a bubble universe collision. In addition, there was no evidence of any gravitational pull of other universes on ours.Proponents and skeptics
Modern proponents of one or more of the multiverse hypotheses include Hugh Everett, Don Page, Brian Greene, Max Tegmark, Alan Guth, Andrei Linde, Michio Kaku, David Deutsch, Leonard Susskind, Alexander Vilenkin, Yasunori Nomura, Raj Pathria, Laura Mersini-Houghton, Neil deGrasse Tyson, Sean Carroll and Stephen Hawking.Scientists who are generally skeptical of the multiverse hypothesis include: David Gross, Paul Steinhardt, Anna Ijjas, Abraham Loeb, David Spergel, Neil Turok, Viatcheslav Mukhanov, Michael S. Turner, Roger Penrose, George Ellis, Joe Silk,
Carlo Rovelli, Adam Frank, Marcelo Gleiser, Jim Baggott and Paul Davies.
Arguments against multiverse theories
In his 2003 New York Times opinion piece, "A Brief History of the Multiverse", author and cosmologist Paul Davies offered a variety of arguments that multiverse theories are non-scientific:George Ellis, writing in August 2011, provided a criticism of the multiverse, and pointed out that it is not a traditional scientific theory. He accepts that the multiverse is thought to exist far beyond the cosmological horizon. He emphasized that it is theorized to be so far away that it is unlikely any evidence will ever be found. Ellis also explained that some theorists do not believe the lack of empirical testability falsifiability is a major concern, but he is opposed to that line of thinking:
Ellis says that scientists have proposed the idea of the multiverse as a way of explaining the nature of existence. He points out that it ultimately leaves those questions unresolved because it is a metaphysical issue that cannot be resolved by empirical science. He argues that observational testing is at the core of science and should not be abandoned:
Classification schemes
and Brian Greene have devised classification schemes for the various theoretical types of multiverses and universes that they might comprise.Max Tegmark's four levels
has provided a taxonomy of universes beyond the familiar observable universe. The four levels of Tegmark's classification are arranged such that subsequent levels can be understood to encompass and expand upon previous levels. They are briefly described below.Level I: An extension of our universe
A prediction of cosmic inflation is the existence of an infinite ergodic universe, which, being infinite, must contain Hubble volumes realizing all initial conditions.Accordingly, an infinite universe will contain an infinite number of Hubble volumes, all having the same physical laws and physical constants. In regard to configurations such as the distribution of matter, almost all will differ from our Hubble volume. However, because there are infinitely many, far beyond the cosmological horizon, there will eventually be Hubble volumes with similar, and even identical, configurations. Tegmark estimates that an identical volume to ours should be about 1010115 meters away from us.
Given infinite space, there would, in fact, be an infinite number of Hubble volumes identical to ours in the universe. This follows directly from the cosmological principle, wherein it is assumed that our Hubble volume is not special or unique.
Level II: Universes with different physical constants
In the eternal inflation theory, which is a variant of the cosmic inflation theory, the multiverse or space as a whole is stretching and will continue doing so forever, but some regions of space stop stretching and form distinct bubbles. Such bubbles are embryonic level I multiverses.Different bubbles may experience different spontaneous symmetry breaking, which results in different properties, such as different physical constants.
Level II also includes John Archibald Wheeler's oscillatory universe theory and Lee Smolin's fecund universes theory.
Level III: Many-worlds interpretation of quantum mechanics
's many-worlds interpretation is one of several mainstream interpretations of quantum mechanics.In brief, one aspect of quantum mechanics is that certain observations cannot be predicted absolutely. Instead, there is a range of possible observations, each with a different probability. According to the MWI, each of these possible observations corresponds to a different universe. Suppose a six-sided dice is thrown and that the result of the throw corresponds to a quantum mechanics observable. All six possible ways the dice can fall correspond to six different universes.
Tegmark argues that a Level III multiverse does not contain more possibilities in the Hubble volume than a Level I or Level II multiverse. In effect, all the different "worlds" created by "splits" in a Level III multiverse with the same physical constants can be found in some Hubble volume in a Level I multiverse. Tegmark writes that, "The only difference between Level I and Level III is where your doppelgängers reside. In Level I they live elsewhere in good old three-dimensional space. In Level III they live on another quantum branch in infinite-dimensional Hilbert space."
Similarly, all Level II bubble universes with different physical constants can, in effect, be found as "worlds" created by "splits" at the moment of spontaneous symmetry breaking in a Level III multiverse. According to Yasunori Nomura, Raphael Bousso, and Leonard Susskind, this is because global spacetime appearing in the inflating multiverse is a redundant concept. This implies that the multiverses of Levels I, II, and III are, in fact, the same thing. This hypothesis is referred to as "Multiverse = Quantum Many Worlds". According to Yasunori Nomura, this quantum multiverse is static, and time is a simple illusion.
Related to the many-worlds idea are Richard Feynman's multiple histories interpretation and H. Dieter Zeh's many-minds interpretation.
Level IV: Ultimate ensemble
The ultimate mathematical universe hypothesis is Tegmark's own hypothesis.This level considers all universes to be equally real which can be described by different mathematical structures.
Tegmark writes:
He argues that this "implies that any conceivable parallel universe theory can be described at Level IV" and "subsumes all other ensembles, therefore brings closure to the hierarchy of multiverses, and there cannot be, say, a Level V."
Jürgen Schmidhuber, however, says that the set of mathematical structures is not even well-defined and that it admits only universe representations describable by constructive mathematics—that is, computer programs.
Schmidhuber explicitly includes universe representations describable by non-halting programs whose output bits converge after finite time, although the convergence time itself may not be predictable by a halting program, due to the undecidability of the halting problem. He also explicitly discusses the more restricted ensemble of quickly computable universes.
Brian Greene's nine types
The American theoretical physicist and string theorist Brian Greene discussed nine types of multiverses:;Quilted
;Inflationary
;Brane
;Cyclic
;Landscape
;Quantum
;Holographic
;Simulated
;Ultimate
Cyclic theories
In several theories, there is a series of infinite, self-sustaining cycles.M-theory
A multiverse of a somewhat different kind has been envisaged within string theory and its higher-dimensional extension, M-theory.These theories require the presence of 10 or 11 spacetime dimensions respectively. The extra six or seven dimensions may either be compactified on a very small scale, or our universe may simply be localized on a dynamical -dimensional object, a D3-brane. This opens up the possibility that there are other branes which could support other universes.
Black-hole cosmology
Black-hole cosmology is a cosmological model in which the observable universe is the interior of a black hole existing as one of possibly many universes inside a larger universe. This includes the theory of white holes, which are on the opposite side of space-time.Anthropic principle
The concept of other universes has been proposed to explain how our own universe appears to be fine-tuned for conscious life as we experience it.If there were a large number of universes, each with possibly different physical laws, then some of these universes would have the combination of laws and fundamental parameters that are suitable for the development of matter, astronomical structures, elemental diversity, stars, and planets that can exist long enough for life to emerge and evolve.
The weak anthropic principle could then be applied to conclude that we would only exist in one of those few universes that happened to be finely tuned, permitting the existence of life with developed consciousness. Thus, while the probability might be extremely small that any particular universe would have the requisite conditions for life, those conditions do not require intelligent design as an explanation for the conditions in the Universe that promote our existence in it.
An early form of this reasoning is evident in Arthur Schopenhauer's 1844 work "Von der Nichtigkeit und dem Leiden des Lebens", where he argues that our world must be the worst of all possible worlds, because if it were significantly worse in any respect it could not continue to exist.
Occam's razor
Proponents and critics disagree about how to apply Occam's razor. Critics argue that to postulate an almost infinite number of unobservable universes, just to explain our own universe, is contrary to Occam's razor. However, proponents argue that in terms of Kolmogorov complexity the proposed multiverse is simpler than a single idiosyncratic universe.For example, multiverse proponent Max Tegmark argues: