NEPTUNE


The NEPTUNE Ocean Observatory project is part of Ocean Networks Canada which is a University of Victoria initiative. NEPTUNE is the world's first regional-scale underwater ocean observatory that plugs directly into the Internet. NEPTUNE is the largest installation on the Ocean Networks Canada network of ocean observatories. Since December 2009, it has allowed people to "surf" the seafloor while ocean scientists run deep-water experiments from labs and universities around the world. Along with its sister project, VENUS, NEPTUNE offers a unique approach to ocean science. Traditionally, ocean scientists have relied on infrequent ship cruises or space-based satellites to carry out their research, while the NEPTUNE project uses a remotely operated crawler.

Overview

NEPTUNE is an acronym for North-East Pacific Time-series Undersea Networked Experiments. The North-East Pacific is home to the Juan de Fuca plate—smallest of Earth's 12 tectonic plates. Its small size and close proximity to the coast gives NEPTUNE Canada a unique opportunity to observe tectonic processes. NEPTUNE Canada is built to provide continuous observations for 25 years. The time-series data gathered will allow scientists to study long-term changes over the life of the project. Instruments comprising the undersea observatory will operate at depths ranging from 17 to 2,660 m. Hundreds of instruments have been connected to the Internet by way of shielded cables carrying both power and fibre-optic communication lines. A database will archive and provide networked access to all archived data. Taking advantage of this platform, scientists collaborating with NEPTUNE are expected to conduct thousands of unique experiments over the life of the project.

Status

In NEPTUNE Canada network traffic, there are 4 different type of network channels that are defined in the network description file based on the data provided. The first channel provides 10 Gbit/s data rate between UVIC DMAS and shore station in Port Alberni. This channel has the largest volume in the system, and is located in between the edge of the network of the system and the main receiver UVIC DMAS.
The shore station is linked to the first branching unit as followed with 5 other branching units that are also linked to other branching units. This solid connection spur cable|forms a ring-shaped SONET network that has two cables in order to control the network traffic in two directions. A 2 by 2 Gbit/s data channel is implemented on the spur cable. Furthermore, each branching unit is connected to a regional node station. And the connection between node stations and branching units provide 1 Gbit/s data rate using a fiber-optic cable. 6 Node stations split the back-haul into 6 separated regions and the network behavior in between each regions' devices is identical. Similar to the connections between node stations and branching units, node stations are linked to junction boxes with 1 Gbit/s data rate.
Junction boxes can be linked to both instruments and other junction boxes with different data channels. All the network channels transmit the data with 0.1 delay rate. Junction box to junction box and instrument to instrument connections are implemented with either 1 Gbit/s or 100 Mbit/s data rates. An important connection limit on the junction boxes is that more than 10 components cannot be connected to a single junction box. Instruments can also be linked to either junction boxes or any other instrument with either 1 Gbit/s data rate or 100 Mbit/s data channel. The instruments are the final spot of the each regional network branches. The data flows from the instruments where the edge of each regional branch is located towards UVIC DMAS by following a secure and the shortest path as configured by the network configurator used by NEPTSim.