Niemeier lattice


In mathematics, a Niemeier lattice is one of the 24
positive definite even unimodular lattices of rank 24,
which were classified by. gave a simplified proof of the classification. has a sentence mentioning that he found more than 10 such lattices, but gives no further details. One example of a Niemeier lattice is the Leech lattice.

Classification

Niemeier lattices are usually labeled by the Dynkin diagram of their
root systems. These Dynkin diagrams have rank either 0 or 24, and all of their components have the same Coxeter number. There are exactly 24 Dynkin diagrams with these properties, and there turns out to be a unique Niemeier
lattice for each of these Dynkin diagrams.
The complete list of Niemeier lattices is given in the following table.
In the table,
Lattice root systemCoxeter numberG0G1G2G
Leech lattice 012Co11Z24
A12422241M24212
A21233!122M1236
A3844!82134444
A4655!6212053
A54D466!422472
D4666372043
A6477!421272
A72D5288!2 22432
A8399!32627
A92D61010!2 2220
D6410412416
E641242249
A11D7E61212!2112
A1221322213
D83143168
A15D91616!218
A17E71818!216
D10E72182124
D122222124
A242525!215
D16E830112
E83303161
D244622324!112

The neighborhood graph of the Niemeier lattices

If L is an odd unimodular lattice of dimension 8n and M its sublattice of even vectors, then M is contained in exactly 3 unimodular lattices, one of which is L and the other two of which are even. The Kneser neighborhood graph in 8n dimensions has a point for each even lattice, and a line joining two points for each odd 8n dimensional lattice with no norm 1 vectors, where the vertices of each line are the two even lattices associated to the odd lattice. There may be several lines between the same pair of vertices, and there may be lines from a vertex to itself. Kneser proved that this graph is always connected. In 8 dimensions it has one point and no lines, in 16 dimensions it has two points joined by one line, and in 24 dimensions it is the following graph:
Each point represents one of the 24 Niemeier lattices, and the lines joining them represent the 24 dimensional odd unimodular lattices with no norm 1 vectors. The number on the right is the Coxeter number of the Niemeier lattice.
In 32 dimensions the neighborhood graph has more than a billion vertices.

Properties

Some of the Niemeier lattices are related to sporadic simple groups.
The Leech lattice is acted on by a double cover of the Conway group,
and the lattices A124 and A212
are acted on by the Mathieu groups M24 and M12.
The Niemeier lattices, other than the Leech lattice, correspond to
the deep holes of the Leech lattice. This implies that the affine Dynkin diagrams of the Niemeier lattices can be seen inside the Leech lattice, when
two points of the Leech lattice are joined by no lines when they have distance
, by 1 line if they have distance,
and by a double line if they have distance.
Niemeier lattices also correspond to the 24 orbits of primitive norm zero vectors w of the even unimodular Lorentzian lattice II25,1, where the Niemeier lattice corresponding to w is w/w.