Nivolumab


Nivolumab, sold under the brand name Opdivo, is a medication used to treat a number of types of cancer. This includes melanoma, lung cancer, renal cell carcinoma, Hodgkin lymphoma, head and neck cancer, colon cancer, and liver cancer. It is used by slow injection into a vein.
Common side effects include tiredness, rash, liver problems, muscles pains, and cough. Severe side effects may include immune-related lung, intestinal, liver, kidney, skin, or endocrine problems. Use during pregnancy may harm the baby and use when breastfeeding is not recommended. Nivolumab is a human IgG4 monoclonal antibody that blocks PD-1. It is a type of Immunotherapy and works as a checkpoint inhibitor, blocking a signal that prevents activation of T cells from attacking the cancer.
Nivolumab was approved for medical use in the United States in 2014. It is on the World Health Organization's List of Essential Medicines, the safest and most effective medicines needed in a health system. In the United Kingdom it costs the NHS about £5266 a month as of 2018. In the United States this amount costs about US$13,556 as of 2019, while in China it is about US$7,000. It is made using Chinese hamster ovary cells.

Medical use

Nivolumab is used as a first line treatment for inoperable or metastatic melanoma in combination with ipilimumab if the cancer does not have a mutation in BRAF, and as a second-line treatment for inoperable or metastatic melanoma following treatment of ipilimumab and, if the cancer has a BRAF mutation, a BRAF inhibitor. It is also used to treat metastatic squamous non-small cell lung cancer with progression with or after platinum-based drugs and for treatment of small cell lung cancer It also used as a second-line treatment for renal cell carcinoma after anti-angiogenic treatment has failed.
Nivolumab is also used for primary or metastatic urothelial carcinoma, the most common form of bladder cancer. It can be prescribed for locally advanced or metastatic form of the condition that experience disease progression during or following platinum-containing chemotherapy or have progression within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.
Nivolumab, and other PD-1 inhibitors, appear to be effective in people with brain metastases and for cancer in people with autoimmune diseases.

Side effects

The drug label contains warnings with regard to increased risks of severe immune-mediated inflammation of the lungs, the colon, the liver, the kidneys, as well as immune-mediated hypothyroidism and hyperthyroidism. Hypothyroidism may affect 8.5% and hyperthyroidism 3.7%. Autoimmune diabetes similar to diabetes mellitus type 1 may occur in approximately 2% of people treated with nivolumab. Colitis may occur due to nivolimumab.
In trials for melanoma, the following side effects occurred in more than 10% of subjects and more frequently than with chemotherapy alone: rash and itchy skin, cough, upper respiratory tract infections, and peripheral edema. Other clinically important side effects with less than 10% frequency were ventricular arrhythmia, inflammation of parts of the eye, infusion-related reactions, dizziness, peripheral and sensory neuropathy, peeling skin, erythema multiforme, vitiligo, and psoriasis.
In trials for lung cancer, the following side effects occurred in more than 10% of subjects and more frequently than with chemotherapy alone: fatigue, weakness, edema, fever, chest pain, generalized pain, shortness of breath, cough, muscle and joint pain, decreased appetite, abdominal pain, nausea and vomiting, constipation, weight loss, rash, and itchy skin.
Levels of electrolytes and blood cells counts were also disrupted.

Pregnancy and breastfeeding

Use during pregnancy may harm the baby; it is not known if nivolumab is secreted in breast milk but use during breastfeeding is not recommended.

Pharmacokinetics

Based on data from 909 patients, the terminal half-life of nivolumab is 26.7 days and steady-state concentrations were reached by 12 weeks when administered at 3 mg/kg every 2 weeks. Age, gender, race, baseline LDH, PD-L1 expression, tumor type, tumor size, renal impairment, and mild hepatic impairment do not affect clearance of the drug.

Mechanism of action

protect the body from cancer by killing certain cancer cells. But cancer cells evolve proteins to protect themselves from T cells. Nivolumab blocks those protective proteins. Thus, the T cells can kill the cancer cells. This is an example of immune checkpoint blockade.
PD-1 is a protein on the surface of activated T cells. If another molecule, called programmed cell death 1 ligand 1 or programmed cell death 1 ligand 2, binds to PD-1, the T cell becomes inactive. This is one way that the body regulates the immune system, to avoid an overreaction. Many cancer cells make PD-L1, which inhibits T cells from attacking the tumor. Nivolumab blocks PD-L1 from binding to PD-1, allowing the T cell to work. PD-L1 is expressed on 40–50% of melanomas and has limited expression otherwise in most visceral organs with the exception of respiratory epithelium and placental tissue.

Physical properties

Nivolumab is a fully human monoclonal immunoglobulin G4 antibody to PD-1. The gamma 1 heavy chain is 91.8% unmodified human design while the kappa light chain is 98.9%.<

History

It was discovered at Medarex, developed by Medarex and Ono Pharmaceutical, and brought to market by Bristol-Myers Squibb and Ono.
Nivolumab was invented by Dr. Changyu Wang and his team of scientists at Medarex using Medarex's transgenic mice with a humanized immune system; the discovery and in vitro characterization of the antibody, originally called MDX-1106, was published in 2014. Medarex licensed Japanese rights to nivolumab to Ono Pharmaceutical in 2005. Bristol-Myers Squibb acquired Medarex in 2009 for $2.4B, largely on the strength of its checkpoint inhibitor program.
Promising clinical trial results made public in 2012, caused excitement among industry analysts and in the mainstream media; PD-1 was being avidly pursued as a biological target at that time, with companies including Merck with pembrolizumab, Roche with atezolizumab, GlaxoSmithKline in collaboration with the Maryland biotech company Amplimmune; and Teva in collaboration with the Israeli biotech company CureTech competing.
Ono received approval from Japanese regulatory authorities to use nivolumab to treat unresectable melanoma in July 2014, which was the first regulatory approval of a PD-1 inhibitor anywhere in the world.
Merck received its first FDA approval for its PD-1 inhibitor, pembrolizumab, in September 2014.
Nivolumab received FDA approval for the treatment of melanoma in December 2014. In April 2015, the Committee for Medicinal Products for Human Use of the European Medicines Agency recommended approval of Nivolumab for metastatic melanoma as a monotherapy.
In March 2015, the U.S. FDA approved it for the treatment of squamous cell lung cancer.
On 19 June 2015, the European Medicines Agency granted a marketing authorization valid throughout the European Union.
In November 2015, the FDA approved nivolumab as a second-line treatment for renal cell carcinoma after having granted the application breakthrough therapy designation, fast track designation, and priority review status.
In May 2016, the FDA approved nivolumab for the treatment of patients with classical Hodgkin lymphoma who have relapsed or progressed after autologous hematopoietic stem cell transplantation and post-transplantation brentuximab vedotin.
On 20 December 2017, the FDA granted approval to nivolumab for adjuvant treatment of melanoma with involvement of lymph nodes or for metastatic disease with complete resection.
On 16 April 2018, the FDA granted approval to nivolumab in combination with ipilimumab for the first-line treatment of intermediate and poor risk advanced renal cell carcinoma patients.
On 15 June 2018, China's Drug Administration approved nivolumab, the country's first immuno-oncology and the first PD-1 therapy.

Research

Hodgkin's lymphoma

In Hodgkin's lymphoma, Reed-Sternberg cells harbor amplification of chromosome 9p24.1, which encodes PD-L1 and PD-L2 and leads to their constitutive expression. In a small clinical study published in 2015, nivolumab elicited an objective response rate of 87% in a cohort of 20 patients.
Goldkuhle et al. conducted Cochrane review in 2018 with prospectively planned and uncontrolled trials to measure the harms and benefits of nivolumab given to adults with a Hodgkin's lymphoma. The exact inclusion and exclusion criteria and information regarding the dose can be found in the original Cochrane review. In the included trials, most participants had a disease stage of III or higher. The authors of the review conducted an analysis to compared nivolumab to no treatment: The evidence is very uncertain about the effect of Nivolumab on the overall survival, the quality of life, the progression-free survival, the response-rate, the adverse events with grade 3 or 4 and the serious adverse events. The follow-up had a range of 6 to 27 months and varied between the outcomes.

Biomarkers

Amplification of chromosome 9p24 may serve as a predictive biomarker in Hodgkin's lymphoma.
Each company pursuing mAbs against PD-1 as drugs developed assays to measure PD-L1 levels as a potential biomarker using their drugs as the analyte-specific reagent in the assay. BMS partnered with Dako on a nivolumab-based assay. However, as of 2015 the complexity of the immune response had hindered efforts to identify people who would be likely to respond well to PD-1 inhibitors; in particular PD-L1 levels appear to be dynamic and modulated by several factors, and efforts to correlate PD-L1 levels before or during treatment with treatment response or duration of response had failed to reveal any useful correlations as of 2015.

Lung cancer

In 2016, BMS announced the results of a clinical trial in which nivolumab failed to achieve its endpoint and was no better than traditional chemotherapy at treating newly diagnosed lung cancer. BMS went on to attempt to win approval for a combination therapy against lung cancer which included nivolumab and BMS's older drug ipilimumab. The application was withdrawn in early 2019 following disappointing clinical trial data.
Infusion times of 60 minutes and 30 minutes appear to have similar pharmacokinetics of the treatment.

Melanoma

PD-L1 is expressed in 40-50% of melanomas. Phase I and II clinical trials have shown nivolumab as a promising and durable treatment option in Melanoma as a single agent and in combination with ipilimumab. Phase III trials are ongoing.