Nonomino


A nonomino is a polyomino of order 9, that is, a polygon in the plane made of 9 equal-sized squares connected edge-to-edge. The name of this type of figure is formed with the prefix. When rotations and reflections are not considered to be distinct shapes, there are 1,285 different free nonominoes. When reflections are considered distinct, there are 2,500 one-sided nonominoes. When rotations are also considered distinct, there are 9,910 fixed nonominoes.

Symmetry

The 1,285 free nonominoes can be classified according to their symmetry groups:
Unlike octominoes, there are no nonominoes with rotational symmetry of order 4 or with two axes of reflection symmetry aligned with the diagonals.
If reflections of a nonomino are considered distinct, as they are with one-sided nonominoes, then the first and fourth categories above double in size, resulting in an extra 1,215 nonominoes for a total of 2,500. If rotations are also considered distinct, then the nonominoes from the first category count eightfold, the ones from the next three categories count fourfold, the ones from the fifth category count twice, and the ones from the last category count only once. This results in 1,196 × 8 + × 4 + 4 × 2 + 2 = 9,910 fixed nonominoes.

Packing and tiling

37 nonominoes have holes. Therefore a complete set cannot be packed into a rectangle and not all nonominoes have tilings. Of the 1285 free nonominoes, 960 satisfy the Conway criterion and 88 more can form a patch satisfying the criterion. However, 1050 free nonominoes do admit tilings, the two exceptions shown to the right. This is the lowest order of polyomino for which such exceptions exist.
One nonomino has a two-square hole and is the smallest polyomino with such a hole.