In computability theory a numbering is the assignment of natural numbers to a set of objects such as functions, rational numbers, graphs, or words in some language. A numbering can be used to transfer the idea of computability and related concepts, which are originally defined on the natural numbers using computable functions, to these different types of objects. Common examples of numberings include Gödel numberings in first-order logic and admissible numberings of the set of partial computable functions.
Definition and examples
A numbering of a set is a surjectivepartial function from to S. The value of a numbering ν at a number i is often written νi instead of the usual. Examples of numberings include:
The set of all finite subsets of has a numbering , defined so that and so that, for each finite nonempty set, where . This numbering is a bijection.
A numbering is total if it is a total function. If the domain of a partial numbering is recursively enumerable then there always exists an equivalent total numbering. A numbering η is decidable if the set is a decidable set. A numbering η is single-valued if η = η if and only ifx=y; in other words if η is an injective function. A single-valued numbering of the set of partial computable functions is called a Friedberg numbering.
Comparison of numberings
There is a partial ordering on the set of all numberings. Let and be two numberings. Then is reducible to, written, if If and then is equivalent to ; this is written.
Computable numberings
When the objects of the set S are sufficiently "constructive", it is common to look at numberings that can be effectively decoded. For example, if S consists of recursively enumerable sets, the numbering η is computable if the set of pairs where y∈η is recursively enumerable. Similarly, a numbering g of partial functions is computable if the relation R = " = z" is partial recursive. A computable numbering is called principal if every computable numbering of the same set is reducible to it. Both the set of all r.e. subsets of and the set of all partial computable functions have principle numberings. A principle numbering of the set of partial recursive functions is known as an admissible numbering in the literature.