The expansive force of rusting, which may be called oxide jacking or rust burst, is a phenomenon that can cause damage to structures made of stone, masonry, concrete or ceramics, and reinforced with metal components. A definition is "the displacement of building elements due to the expansion of iron and steel products as the metal rusts and becomes iron oxide". Corrosion of other metals such as aluminum can also cause oxide jacking.
Physical process
According to metallurgist Jack Harris, "Oxidation is usually accompanied by a net expansion so that when it occurs in a confined space stresses are generated in the metal component itself or in any surrounding medium such as stone or cement. So much energy is released by oxidation that the stresses generated are of sufficient magnitude to deform or fracture all known materials." As early as 1915, it was recognized that certain modern metal alloys are more susceptible to excessive oxidation when subjected to weathering than other metals. At that time, there was a trend to replace wrought iron fasteners with mild steel equivalents, which were less expensive. Unexpectedly, the mild steel fasteners failed in real world use much more quickly than anticipated, leading to a return to use of wrought iron in certain applications where length of service was important.
Structures built of concrete and reinforced with metal rebar are also subject to damage by oxide jacking. Expansion of corroded rebar causes spalling of the concrete. Structures exposed to a marine environment, or where salt is used for de-icing purposes, are especially susceptible to this type of damage. Research in the 1960s showed that 22% of concrete bridge decks in Pennsylvania showed signs of spalling due to oxide jacking within four years of construction. Oxide jacking caused widespread damage to concrete council houses built in the United Kingdom in the post World War II era. According to an expert in the field, the problem resulted in "intensive worldwide research into the causes and repair of reinforcement corrosion, which in turn led to a vast output of research papers, conferences and publications on the subject."
Damage to stone countertops
components fabricated out of granite and other natural stones are sometimes reinforced with metal rods inserted into grooves cut into the underside of the stone, and bonded in place with various resins. This procedure is called "rodding" by countertop fabricators. Most commonly, these rods will be placed near sink cutouts to prevent cracking of the brittle stone countertop during transportation and installation. Data published by the Marble Institute of America shows that this technique results in a 600% increase in the deflection strength of the component. However, if a metal rod subject to oxidation or other forms of corrosion is used, and moisture from a sink or faucet reaches the rod, oxide jacking can crack the countertop directly above the rod. Mild steel and some grades of aluminium rods are known to cause oxide jacking failures in granite countertops. Skilled stone repair professionals can disassemble the cracked stone, remove the metal rod, and reassemble the stone using various resins tinted to match the colors of the stone. This type of problem can be prevented by using reinforcing rods made of stainless steel or fiberglass in the rodding procedure.