Perfect field


In algebra, a field k is perfect if any one of the following equivalent conditions holds:
Otherwise, k is called imperfect.
In particular, all fields of characteristic zero and all finite fields are perfect.
Perfect fields are significant because Galois theory over these fields becomes simpler, since the general Galois assumption of field extensions being separable is automatically satisfied over these fields.
Another important property of perfect fields is that they admit Witt vectors.
More generally, a ring of characteristic p is called perfect if the Frobenius endomorphism is an automorphism.

Examples

Examples of perfect fields are:
Most fields that are encountered in practice are perfect. The imperfect case arises mainly in algebraic geometry in characteristic. Every imperfect field is necessarily transcendental over its prime subfield, because the latter is perfect. An example of an imperfect field is
since the Frobenius sends, hence it is not surjective. It embeds into the perfect field
called its perfection. Imperfect fields cause technical difficulties because irreducible polynomials can become reducible in the algebraic closure of the base field. For example, consider for an imperfect field of characteristic and a not a p-th power in f. Then in its algebraic closure, the following equality holds:
where b = a and such b exists in this algebraic closure. Geometrically, this means that does not define an affine plane curve in.

Field extension over a perfect field

Any finitely generated field extension K over a perfect field k is separably generated, i.e. admits a separating transcendence base, that is, a transcendence base Γ such that K is separably algebraic over k.

Perfect closure and perfection

One of the equivalent conditions says that, in characteristic p, a field adjoined with all p-th roots is perfect; it is called the perfect closure of k and usually denoted by.
The perfect closure can be used in a test for separability. More precisely, a commutative k-algebra A is separable if and only if is reduced.
In terms of universal properties, the perfect closure of a ring A of characteristic p is a perfect ring Ap of characteristic p together with a ring homomorphism such that for any other perfect ring B of characteristic p with a homomorphism there is a unique homomorphism such that v factors through u. The perfect closure always exists; the proof involves "adjoining p-th roots of elements of A", similar to the case of fields.
The perfection of a ring A of characteristic p is the dual notion. In other words, the perfection R of A is a perfect ring of characteristic p together with a map such that for any perfect ring B of characteristic p equipped with a map, there is a unique map such that φ factors through θ. The perfection of A may be constructed as follows. Consider the projective system
where the transition maps are the Frobenius endomorphism. The inverse limit of this system is R and consists of sequences of elements of A such that for all i. The map sends to x0.