Physical vapor deposition


Physical vapor deposition, sometimes called physical vapor transport, describes a variety of vacuum deposition methods which can be used to produce thin films and coatings. PVD is characterized by a process in which the material goes from a condensed phase to a vapor phase and then back to a thin film condensed phase. The most common PVD processes are sputtering and evaporation. PVD is used in the manufacture of items which require thin films for mechanical, optical, chemical or electronic functions. Examples include semiconductor devices such as thin film solar panels, aluminized PET film for food packaging and balloons, and titanium nitride coated cutting tools for metalworking. Besides PVD tools for fabrication, special smaller tools have been developed.
The source material is unavoidably also deposited on most other surfaces interior to the vacuum chamber, including the fixturing used to hold the parts.

Examples

Various thin film characterization techniques can be used to measure the physical properties of PVD coatings, such as:

Advantages

As mentioned previously, PVD coatings are generally used to improve hardness, wear resistance and oxidation resistance. Thus, such coatings are used in a wide range of applications such as:
By varying the gases and duration of process, a range of colours are produced by Physical Vapour Deposition on stainless steel. The resulting coloured stainless steel product can appear as brass, bronze and other metals or alloys.
This PVD coloured stainless steel can be used as exterior cladding for buildings and structures, such as the Vessel sculpture in New York City and The Bund in Shanghai. It is also used for interior hardware, panelling and fixtures, and is even used on some consumer electronics, like the Space Gray and Gold finishes of the iPhone X and XS.