Because the plastic number has the minimal polynomial it is also a solution of the polynomial equation for every polynomial that is a multiple of but not for any other polynomials with integer coefficients. Since the discriminant of its minimal polynomial is −23, its splitting field over rationals is ). This field is also a Hilbert class field of. The plastic number is the smallest Pisot–Vijayaraghavan number. Its algebraic conjugates are of absolute value ≈ 0.868837. This value is also because the product of the three roots of the minimal polynomial is 1.
Trigonometry
The plastic number can be written using the hyperbolic cosine and its inverse:
Geometry
There are precisely three ways of partitioning a square into three similar rectangles:
The solution in which two of the three rectangles are congruent and the third one has twice the side length of the other two, where the rectangles have aspect ratio 3:2.
The solution in which the three rectangles are mutually non congruent and where they have aspect ratio ρ2. The ratios of the linear sizes of the three rectangles are: ρ ; ρ2 ; and ρ3. The internal, long edge of the largest rectangle divides two of the square's four edges into two segments each that stand to one another in the ratioρ. The internal, coincident short edge of the medium rectangle and long edge of the small rectangle divides one of the square's other, two edges into two segments that stand to one another in the ratio ρ4.
The fact that a rectangle of aspect ratio ρ2 can be used for dissections of a square into similar rectangles is equivalent to an algebraic property ofthe numberρ2 related to the Routh–Hurwitz theorem: all of its conjugates have positive real part.
History
Name
Dutch architect and Benedictine monk Dom Hans van der Laan gave the name plastic number to this number in 1928. In 1924, four years prior to van der Laan's christening of the number's name, French engineer had already discovered the number and referred to it as the radiant number. Unlike the names of the golden ratio and silver ratio, the word plastic was not intended by van der Laan to refer to a specific substance, but rather in its adjectival sense, meaning something that can be given a three-dimensional shape. This, according to Richard Padovan, is because the characteristic ratios of the number, 3/4 and 1/7, relate to the limits of human perception in relating one physical size to another. Van der Laan designed the 1967 St. Benedictusberg Abbey church to these plastic number proportions. The plastic number is also sometimes called the silver number, a name given to it by Midhat J. Gazalé and subsequently used by Martin Gardner, but that name is more commonly used for the silver ratio, one of the ratios from the family of metallic means first described by Vera W. de Spinadel in 1998. Martin Gardner has suggested referring to as "high phi", and Donald Knuth created a special typographic mark for this name, a variant of the Greek letterphi with its central circle raised, resembling the Georgian letter pari.