Polynomial lemniscate


In mathematics, a polynomial lemniscate or polynomial level curve is a plane algebraic curve of degree 2n, constructed from a polynomial p with complex coefficients of degree n.
For any such polynomial p and positive real number c, we may define a set of complex numbers by This set of numbers may be equated to points in the real Cartesian plane, leading to an algebraic curve ƒ = c2 of degree 2n, which results from expanding out in terms of z = x + iy.
When p is a polynomial of degree 1 then the resulting curve is simply a circle whose center is the zero of p. When p is a polynomial of degree 2 then the curve is a Cassini oval.

Erdős lemniscate

A conjecture of Erdős which has attracted considerable interest concerns the maximum length of a polynomial lemniscate ƒ = 1 of degree 2n when p is monic, which Erdős conjectured was attained when p = zn − 1.
This is still not proved but Fryntov and Nazarov proved that p gives a
local maximum. In the case when n = 2, the Erdős lemniscate is the Lemniscate of Bernoulli
and it has been proven that this is indeed the maximal length in degree four. The Erdős lemniscate has three ordinary n-fold points, one of which is at the origin, and a genus of /2. By inverting the Erdős lemniscate in the unit circle, one obtains a nonsingular curve of degree n.

Generic polynomial lemniscate

In general, a polynomial lemniscate will not touch at the origin, and will have only two ordinary n-fold singularities, and hence a genus of 2. As a real curve, it can have a number of disconnected components. Hence, it will not look like a lemniscate, making the name something of a misnomer.
An interesting example of such polynomial lemniscates are the Mandelbrot curves.
If we set p0 = z, and pn = pn−12 + z, then the corresponding polynomial lemniscates Mn defined by |pn| = 2 converge to the boundary of the Mandelbrot set.
The Mandelbrot curves are of degree 2n+1.