Power Jets W.2


The Power Jets W.2 was a British turbojet engine designed by Frank Whittle and Power Jets Ltd. Like the earlier Power Jets W.1, the "trombone" configuration featured a simple double-sided centrifugal compressor, reverse-flow combustion chambers and an air-cooled axial-flow turbine section.

Design and development

In 1940 the Air Ministry placed a contract with the Gloster Aircraft Company for prototypes of a new twin-engined jet fighter aircraft to the requirement of F.9/40, this aircraft became the Gloster Meteor. At the same time, Power Jets was authorised to design a new engine that was intended to power the same aircraft. The W.2 was built under contract by the Rover Car Company in the early 1940s. Relations between Power Jets and Rover were somewhat strained and development of the W.2 was very slow.
In late 1942, Rover agreed to exchange their jet engine factory at Barnoldswick, Lancashire for the Rolls-Royce Meteor tank engine factory in Nottingham, with no money changing hands. At the behest of the UK government, Rolls-Royce thereupon assumed control of the W.2 project, with Frank Whittle and his small team at Power Jets acting in an advisory capacity. Together, they ironed out the problems with the W.2 and finally put the engine into mass production as the thrust Rolls-Royce Welland. These engines were installed in the Gloster Meteor F Mk1 and early F Mk3's and entered service in 1944.
After initial suggestions in 1939 by the Engine Department of the Royal Aircraft Establishment, the latter's Pyestock Section experimented with the technique of injecting fuel into the engine's exhaust nozzle, later known as reheat, and this technique was further refined after Power Jets and the personnel from Pyestock had been amalgamated. Reheat was later flight trialled in the W.2/700 engines in a Meteor I. The technique increased the Meteor's speed by 30-40mph.

Variants

Note: the Rover designations for engines produced at Barnoldswick were given a "B" prefix together with their own internal design number, e.g., "B.23". Later, after designs were transferred to Rolls-Royce an additional "R" was prefixed, changing the designation to "RB" to prevent possible confusion with US bomber designations, e.g., "RB.23". This "RB" designation system continues to be used within Rolls-Royce to this day.
This design was later to become the Derwent
;W.2
;W.2 Mark IV
;W.2Y
;W.2B/Rover B.23
;W.2B Mark II
;W.2B/500 - Rover B.26
;W.2/700
;W.2/800
;W.2/850
;Rolls-Royce B.23 Welland
;Rolls-Royce B.37 Derwent I

Applications

The following aircraft were used for test purposes only:
The W.2B/700 was to be used in the Miles M.52 supersonic research aircraft. In order to achieve the thrust required for supersonic flight, a version of the engine was developed using a turbine-driven "augmenter" ducted fan. The NO.4 augmenter was mounted behind the engine, drawing fresh air through ducts surrounding the engine. Power was boosted even further by supplying the air to the world's first "reheat jetpipe" or afterburner which was actually a very early athodyd or ramjet. The hope was that this combination of the W.2/700, turbofan augmenter and re-heat/ramjet would produce the required power for the proposed 1,000 mph aircraft.

Engines on display