Quantum neural network research is still in its infancy, and a conglomeration of proposals and ideas of varying scope and mathematical rigor have been put forward. Most of them are based on the idea of replacing classical binary or McCulloch-Pitts neurons with a qubit, resulting in neural units that can be in a superposition of the state ‘firing’ and ‘resting’.
At a larger scale, researchers have attempted to generalize neural networks to the quantum setting. One way of constructing a quantum neuron is to first generalise classical neurons and then generalising them further to make unitary gates. Interactions between neurons can be controlled quantumly, with unitary gates, or classically, via measurement of the network states. This high-level theoretical technique can be applied broadly, by taking different types of networks and different implementations of quantum neurons, such as photonically implemented neurons and quantum reservoir processor. Most learning algorithms follow the classical model of training an artificial neural network to learn the input-output function of a given training set and use classical feedback loops to update parameters of the quantum system until they converge to an optimal configuration. Learning as a parameter optimisation problem has also been approached by adiabatic models of quantum computing. Quantum neural networks can be applied to algorithmic design: given qubits with tunable mutual interactions, one can attempt to learn interactions following the classical backpropagation rule from a training set of desired input-output relations, taken to be the desired output algorithm's behavior. The quantum network thus ‘learns’ an algorithm.
The quantum associative memory algorithm was introduced by Dan Ventura and Tony Martinez in 1999. The authors do not attempt to translate the structure of artificial neural network models into quantum theory, but propose an algorithm for a circuit-based quantum computer that simulates associative memory. The memory states are written into a superposition, and a Grover-like quantum search algorithm retrieves the memory state closest to a given input. An advantage lies in the exponential storage capacity of memory states, however the question remains whether the model has significance regarding the initial purpose of Hopfield models as a demonstration of how simplified artificial neural networks can simulate features of the brain.
Classical neural networks inspired by quantum theory
A substantial amount of interest has been given to a “quantum-inspired” model that uses ideas from quantum theory to implement a neural network based on fuzzy logic.