Quasithin group


In mathematics, a quasithin group is a finite simple group that resembles a group of Lie type of rank at most 2 over a field of characteristic 2. More precisely it is a finite simple group of characteristic 2 type and width 2. Here characteristic 2 type means that its centralizers of involutions resemble those of groups of Lie type over fields of characteristic 2, and the width is roughly the maximal rank of an abelian group of odd order normalizing a non-trivial 2-subgroup of G. When G is a group of Lie type of characteristic 2 type, the width is usually the rank.

Classification

The classification of quasithin groups is a crucial part of the classification of finite simple groups. The quasithin groups were classified in a 1221-page paper by. An earlier announcement by of the classification, on the basis of which the classification of finite simple groups was announced as finished in 1983, was premature as the unpublished manuscript of his work was incomplete and contained serious gaps.
According to, the finite simple quasithin groups of even characteristic are given by
If the condition "even characteristic" is relaxed to "even type" in the sense of the revision of the classification by Daniel Gorenstein, Richard Lyons, and Ronald Solomon, then the only extra group that appears is the Janko group J1.