Rayleigh–Gans approximation, also known as Rayleigh–Gans–Debye approximation and Rayleigh–Gans–Born approximation, is an approximate solution to light scattering by optically soft particles. Optical softness implies that the relative refractive index of particle is close to that of the surrounding medium. The approximation holds for particles of arbitrary shape that are relatively small but can be larger than Rayleigh scattering limits. The theory was derived by Lord Rayleigh in 1881 and was applied to homogeneous spheres, sphericalshells, radially inhomogeneous spheres and infinite cylinders. Peter Debye has contributed to the theory in 1881. The theory for homogeneous sphere was rederived by Richard Gans in 1925. The approximation is analogous to Born approximation in quantum mechanics.
Theory
The validity conditions for the approximation can be denoted as: is the wavevector of the light, whereas refers to the linear dimension of the particle. is the complex refractive index of the particle. The former condition implies that reflection from the particle interface should be minimum and the latter indicates that the incident light should not undergo appreciable change in phase or amplitude after impacting the particle. The particle is divided into small volume elements, which are treated as independent Rayleigh scatterers. For an inbound light with perpendicular polarization, scattering amplitude function for each element is given as: where denotes the phase difference due to each individual element. The derivation is based on Clausius–Mossotti relation for polarizability. The fundamental approximation in Rayleigh–Gans theory dictates that the particle dimensions and relative refractive index are not too large; as a result, phase for each element is dependent only on its location. In the far-field, scattering amplitude function thus becomes: which indicates that the function is dependent on the interference of each wave component. Also considering particle volume, the corresponding S-matrix elements can be written as: where denotes the form factor: For scattered radiation intensity, form factor can alternatively be defined as : The scattered radiationintensity for both polarization are given as: Per the optical theorem, absorption cross section is given as: which is independent of the polarization.