A reflectarray antenna consists of an array of unit cells, illuminated by a feeding antenna. The feeding antenna is usually a horn. The unit cells are usually backed by a ground plane, and the incident wave reflects off them towards the direction of the beam. A phase distribution of concentric rings is applied to focus the wavefronts from the feeding antenna into a plane wave. A progressive phase shift can be applied to the unit cells to steer the beam direction. It is common to offset the feeding antenna to prevent blockage of the beam. In this case, the phase distribution on the reflectarray surface needs to be altered. A reflectarray focuses a beam in a similar way to a parabolic reflector, but with a much thinner form factor.
Phase Distribution
According to, in a reflectarray a constant phase of the entire reflected field is achieved in a plane normal to the direction of the desired pencil beam as expressed by: where is free space wavelength, is the position vector of the th element/unit cell relative to, is the focal length, is the position vector of th element relative to the origin i.e. centre of the reflectarray, is the direction vector of the desired pencil beam, and is the phase shift introduced by th unit cell of reflect array to its reflected field relative to the incident field. For a feed horn located at, the formula for the optimal phase distribution on a conventional reflectarray for a beam in the boresight direction is given by: where is the phase shift for a unit cell located at coordinates. s of a reflectarray antenna operating at 12.5 GHz.
It is important to analyse the reflection magnitude and the reflection phase across the frequency bandwidth of operation. When designing a reflectarray, we aim to maximise the reflection magnitude to be close to 1 . The reflection phase at each unit cell determines the overall beam shape and direction. Ideally, the total phase shift range would be 360°. The aperture efficiency, and hence gain, of the reflectarray will be reduced if the angle of incidence to the unit cells is not considered, or if spillover occurs or illumination of the reflectarray is not optimal. Similarly, phase errors due to quantisation into a discrete number of phase states for digital control can also reduce the gain. A fixed reflectarray has a single beam direction per feed. Changing the shape of the unit cells alters their reflection phase. The unit cells cannot be reconfigured. This has applications in point-to-point communications, or for a satellite covering a specific geographic region. A reconfigurable reflectarray has unit cells whose phase can be electronically controlled in real-time to steer the beam or change its shape. Several methods have been used to implement reconfigurable reflectarray unit cells, including PIN diodes, liquid crystal , and novel materials. Each of these methods introduces loss which reduces the efficiency of the unit cells. Linearity also needs to be considered to minimise out-of-band radiation which could interfere with users on adjacent frequencies.
Other Types of Reflectarrays
In satellite communications, is it necessary to produce multiple beams per feed, sometimes operating at different frequencies and polarisations. An example of this is the four-colour frequency reuse scheme. Circular polarisation is commonly used to reduce the effect of atmospheric depolarisation on the communication system performance. A dual-band reflectarray has two different passband frequencies, for example for uplink and downlink. A bifocal reflectarray has two principle foci, so can focus wavefronts to or from two feeding antennas simultaneously. A dual reflectarray consists of two stages of reflection, in which the beam is first focused by one reflectarray, then by another. The phase distribution on each reflectarray must be carefully calculated to ensure that the phase derivatives are consistent with the angle of incidence of the rays The ratio of the sizes and positions of these reflectarrays can be used to achieve quasi-opticalmagnification.