Reinforcement


In behavioral psychology, reinforcement is a consequence applied that will strengthen an organism's future behavior whenever that behavior is preceded by a specific antecedent stimulus. This strengthening effect may be measured as a higher frequency of behavior, longer duration, greater magnitude, or shorter latency. There are two types of reinforcement, known as positive reinforcement and negative reinforcement; positive is where by a reward is offered on expression of the wanted behaviour and negative is taking away an undesirable element in the persons environment whenever the desired behaviour is achieved.
Rewarding stimuli, which are associated with "wanting" and "liking" and appetitive behavior, function as positive reinforcers; the converse statement is also true: positive reinforcers provide a desirable stimulus. Reinforcement does not require an individual to consciously perceive an effect elicited by the stimulus. Thus, reinforcement occurs only if there is an observable strengthening in behavior. However, there is also negative reinforcement, which is characterized by taking away an undesirable stimulus. Changing someone's job might serve as a negative reinforcer to someone who suffers from back problems, i.e. Changing from a labourers job to an office position for instance.
In most cases, the term "reinforcement" refers to an enhancement of behavior, but this term is also sometimes used to denote an enhancement of memory; for example, "post-training reinforcement" refers to the provision of a stimulus after a learning session in an attempt to increase the retained breadth, detail, and duration of the individual memories or overall memory just formed. The memory-enhancing stimulus can also be one whose effects are directly rather than only indirectly emotional, as with the phenomenon of "flashbulb memory," in which an emotionally highly intense stimulus can incentivize memory of a set of a situation's circumstances well beyond the subset of those circumstances that caused the emotionally significant stimulus, as when people of appropriate age are able to remember where they were and what they were doing when they learned of the assassination of John F. Kennedy or of the September 11, 2001, terrorist attacks.
Reinforcement is an important part of operant or instrumental conditioning.

Terminology

In the behavioral sciences, the terms "positive" and "negative" refer when used in their strict technical sense to the nature of the action performed by the conditioner rather than to the responding operant's evaluation of that action and its consequence. "Positive" actions are those that add a factor, be it pleasant or unpleasant, to the environment, whereas "negative" actions are those that remove or withhold from the environment a factor of either type. In turn, the strict sense of "reinforcement" refers only to reward-based conditioning; the introduction of unpleasant factors and the removal or withholding of pleasant factors are instead referred to as "punishment," which when used in its strict sense thus stands in contradistinction to "reinforcement." Thus, "positive reinforcement" refers to the addition of a pleasant factor, "positive punishment" refers to the addition of an unpleasant factor, "negative reinforcement" refers to the removal or withholding of an unpleasant factor, and "negative punishment" refers to the removal or withholding of a pleasant factor.
This usage is at odds with some non-technical usages of the four term combinations, especially in the case of the term "negative reinforcement," which is often used to denote what technical parlance would describe as "positive punishment" in that the non-technical usage interprets "reinforcement" as subsuming both reward and punishment and "negative" as referring to the responding operant's evaluation of the factor being introduced. By contrast, technical parlance would use the term "negative reinforcement" to describe encouragement of a given behavior by creating a scenario in which an unpleasant factor is or will be present but engaging in the behavior results in either escaping from that factor or preventing its occurrence, as in Martin Seligman's experiments involving dogs' learning processes regarding the avoidance of electric shock.

Introduction

was a well-known and influential researcher who articulated many of the theoretical constructs of reinforcement and behaviorism. Skinner defined reinforcers according to the change in response strength rather than to more subjective criteria, such as what is pleasurable or valuable to someone. Accordingly, activities, foods or items considered pleasant or enjoyable may not necessarily be reinforcing. Stimuli, settings, and activities only fit the definition of reinforcers if the behavior that immediately precedes the potential reinforcer increases in similar situations in the future; for example, a child who receives a cookie when he or she asks for one. If the frequency of "cookie-requesting behavior" increases, the cookie can be seen as reinforcing "cookie-requesting behavior". If however, "cookie-requesting behavior" does not increase the cookie cannot be considered reinforcing.
The sole criterion that determines if a stimulus is reinforcing is the change in probability of a behavior after administration of that potential reinforcer. Other theories may focus on additional factors such as whether the person expected a behavior to produce a given outcome, but in the behavioral theory, reinforcement is defined by an increased probability of a response.
The study of reinforcement has produced an enormous body of reproducible experimental results. Reinforcement is the central concept and procedure in special education, applied behavior analysis, and the experimental analysis of behavior and is a core concept in some medical and psychopharmacology models, particularly addiction, dependence, and compulsion.

Brief history

Laboratory research on reinforcement is usually dated from the work of Edward Thorndike, known for his experiments with cats escaping from puzzle boxes. A number of others continued this research, notably B.F. Skinner, who published his seminal work on the topic in The Behavior of Organisms, in 1938, and elaborated this research in many subsequent publications. Notably Skinner argued that positive reinforcement is superior to punishment in shaping behavior. Though punishment may seem just the opposite of reinforcement, Skinner claimed that they differ immensely, saying that positive reinforcement results in lasting behavioral modification whereas punishment changes behavior only temporarily and has many detrimental side-effects.
A great many researchers subsequently expanded our understanding of reinforcement and challenged some of Skinner's conclusions. For example, Azrin and Holz defined punishment as a “consequence of behavior that reduces the future probability of that behavior,” and some studies have shown that positive reinforcement and punishment are equally effective in modifying behavior. Research on the effects of positive reinforcement, negative reinforcement and punishment continue today as those concepts are fundamental to learning theory and apply to many practical applications of that theory.

Operant conditioning

The term operant conditioning was introduced by B. F. Skinner to indicate that in his experimental paradigm the organism is free to operate on the environment. In this paradigm the experimenter cannot trigger the desirable response; the experimenter waits for the response to occur and then a potential reinforcer is delivered. In the classical conditioning paradigm the experimenter triggers the desirable response by presenting a reflex eliciting stimulus, the Unconditional Stimulus, which he pairs with a neutral stimulus, the Conditional Stimulus.
Reinforcement is a basic term in operant conditioning. For the punishment aspect of operant conditioning – see punishment.

Positive reinforcement

Positive reinforcement occurs when a desirable event or stimulus is presented as a consequence of a behavior and the chance that this behavior will manifest in similar environments increases.
The High Probability Instruction treatment is a behaviorist psychological treatment based on the idea of positive reinforcement.

Negative reinforcement

Negative reinforcement occurs when the rate of a behavior increases because an aversive event or stimulus is removed or prevented from happening.
Extinction can be intentional or unintentional and happens when you ignore an undesired behavior.
Reinforcers serve to increase behaviors whereas punishers serve to decrease behaviors; thus, positive reinforcers are stimuli that the subject will work to attain, and negative reinforcers are stimuli that the subject will work to be rid of or to end. The table below illustrates the adding and subtracting of stimuli in relation to reinforcement vs. punishment.
Rewarding stimulusAversive stimulus
Adding/PresentingPositive ReinforcementPositive Punishment
Removing/Taking AwayNegative PunishmentNegative Reinforcement

For example, offering a child candy if he cleans his room is positive reinforcement. Spanking a child if he breaks a window is positive punishment. Taking away a child's toys for misbehaving is negative punishment. Giving a child a break from his chores if he performs well on a test is negative reinforcement. "Positive and negative" do not carry the meaning of "good and bad" in this usage.

Further ideas and concepts

A primary reinforcer, sometimes called an unconditioned reinforcer, is a stimulus that does not require pairing with a different stimulus in order to function as a reinforcer and most likely has obtained this function through the evolution and its role in species' survival. Examples of primary reinforcers include food, water, and sex. Some primary reinforcers, such as certain drugs, may mimic the effects of other primary reinforcers. While these primary reinforcers are fairly stable through life and across individuals, the reinforcing value of different primary reinforcers varies due to multiple factors. Thus, one person may prefer one type of food while another avoids it. Or one person may eat lots of food while another eats very little. So even though food is a primary reinforcer for both individuals, the value of food as a reinforcer differs between them.

Secondary reinforcers

A secondary reinforcer, sometimes called a conditioned reinforcer, is a stimulus or situation that has acquired its function as a reinforcer after pairing with a stimulus that functions as a reinforcer. This stimulus may be a primary reinforcer or another conditioned reinforcer. An example of a secondary reinforcer would be the sound from a clicker, as used in clicker training. The sound of the clicker has been associated with praise or treats, and subsequently, the sound of the clicker may function as a reinforcer. Another common example is the sound of people clapping – there is nothing inherently positive about hearing that sound, but we have learned that it is associated with praise and rewards.
When trying to distinguish primary and secondary reinforcers in human examples, use the "caveman test." If the stimulus is something that a caveman would naturally find desirable then it is a primary reinforcer. If, on the other hand, the caveman would not react to it, it is a secondary reinforcer. As with primary reinforcers, an organism can experience satiation and deprivation with secondary reinforcers.

Other reinforcement terms

In his 1967 paper, Arbitrary and Natural Reinforcement, Charles Ferster proposed classifying reinforcement into events that increase frequency of an operant as a natural consequence of the behavior itself, and events that are presumed to affect frequency by their requirement of human mediation, such as in a token economy where subjects are "rewarded" for certain behavior with an arbitrary token of a negotiable value. In 1970, Baer and Wolf created a name for the use of natural reinforcers called "behavior traps". A behavior trap requires only a simple response to enter the trap, yet once entered, the trap cannot be resisted in creating general behavior change. It is the use of a behavioral trap that increases a person's repertoire, by exposing them to the naturally occurring reinforcement of that behavior. Behavior traps have four characteristics:
As can be seen from the above, artificial reinforcement is in fact created to build or develop skills, and to generalize, it is important that either a behavior trap is introduced to "capture" the skill and utilize naturally occurring reinforcement to maintain or increase it. This behavior trap may simply be a social situation that will generally result from a specific behavior once it has met a certain criterion.

Intermittent reinforcement schedules

Much behavior is not reinforced every time it is emitted, and the pattern of intermittent reinforcement strongly affects how fast an operant response is learned, what its rate is at any given time, and how long it continues when reinforcement ceases. The simplest rules controlling reinforcement are continuous reinforcement, where every response is reinforced, and extinction, where no response is reinforced. Between these extremes, more complex "schedules of reinforcement" specify the rules that determine how and when a response will be followed by a reinforcer.
Specific schedules of reinforcement reliably induce specific patterns of response, irrespective of the species being investigated. However, the quantitative properties of behavior under a given schedule depend on the parameters of the schedule, and sometimes on other, non-schedule factors. The orderliness and predictability of behavior under schedules of reinforcement was evidence for B.F. Skinner's claim that by using operant conditioning he could obtain "control over behavior", in a way that rendered the theoretical disputes of contemporary comparative psychology obsolete. The reliability of schedule control supported the idea that a radical behaviorist experimental analysis of behavior could be the foundation for a psychology that did not refer to mental or cognitive processes. The reliability of schedules also led to the development of applied behavior analysis as a means of controlling or altering behavior.
Many of the simpler possibilities, and some of the more complex ones, were investigated at great length by Skinner using pigeons, but new schedules continue to be defined and investigated.

Simple schedules

Simple schedules have a single rule to determine when a single type of reinforcer is delivered for a specific response.
Simple schedules are utilized in many differential reinforcement procedures:
Compound schedules combine two or more different simple schedules in some way using the same reinforcer for the same behavior. There are many possibilities; among those most often used are:
The psychology term superimposed schedules of reinforcement refers to a structure of rewards where two or more simple schedules of reinforcement operate simultaneously. Reinforcers can be positive, negative, or both. An example is a person who comes home after a long day at work. The behavior of opening the front door is rewarded by a big kiss on the lips by the person's spouse and a rip in the pants from the family dog jumping enthusiastically. Another example of superimposed schedules of reinforcement is a pigeon in an experimental cage pecking at a button. The pecks deliver a hopper of grain every 20th peck, and access to water after every 200 pecks.
Superimposed schedules of reinforcement are a type of compound schedule that evolved from the initial work on simple schedules of reinforcement by B.F. Skinner and his colleagues. They demonstrated that reinforcers could be delivered on schedules, and further that organisms behaved differently under different schedules. Rather than a reinforcer, such as food or water, being delivered every time as a consequence of some behavior, a reinforcer could be delivered after more than one instance of the behavior. For example, a pigeon may be required to peck a button switch ten times before food appears. This is a "ratio schedule". Also, a reinforcer could be delivered after an interval of time passed following a target behavior. An example is a rat that is given a food pellet immediately following the first response that occurs after two minutes has elapsed since the last lever press. This is called an "interval schedule".
In addition, ratio schedules can deliver reinforcement following fixed or variable number of behaviors by the individual organism. Likewise, interval schedules can deliver reinforcement following fixed or variable intervals of time following a single response by the organism. Individual behaviors tend to generate response rates that differ based upon how the reinforcement schedule is created. Much subsequent research in many labs examined the effects on behaviors of scheduling reinforcers.
If an organism is offered the opportunity to choose between or among two or more simple schedules of reinforcement at the same time, the reinforcement structure is called a "concurrent schedule of reinforcement". Brechner introduced the concept of superimposed schedules of reinforcement in an attempt to create a laboratory analogy of social traps, such as when humans overharvest their fisheries or tear down their rainforests. Brechner created a situation where simple reinforcement schedules were superimposed upon each other. In other words, a single response or group of responses by an organism led to multiple consequences. Concurrent schedules of reinforcement can be thought of as "or" schedules, and superimposed schedules of reinforcement can be thought of as "and" schedules. Brechner and Linder and Brechner expanded the concept to describe how superimposed schedules and the social trap analogy could be used to analyze the way energy flows through systems.
Superimposed schedules of reinforcement have many real-world applications in addition to generating social traps. Many different human individual and social situations can be created by superimposing simple reinforcement schedules. For example, a human being could have simultaneous tobacco and alcohol addictions. Even more complex situations can be created or simulated by superimposing two or more concurrent schedules. For example, a high school senior could have a choice between going to Stanford University or UCLA, and at the same time have the choice of going into the Army or the Air Force, and simultaneously the choice of taking a job with an internet company or a job with a software company. That is a reinforcement structure of three superimposed concurrent schedules of reinforcement.
Superimposed schedules of reinforcement can create the three classic conflict situations described by Kurt Lewin and can operationalize other Lewinian situations analyzed by his force field analysis. Other examples of the use of superimposed schedules of reinforcement as an analytical tool are its application to the contingencies of rent control and problem of toxic waste dumping in the Los Angeles County storm drain system.

Concurrent schedules

In operant conditioning, concurrent schedules of reinforcement are schedules of reinforcement that are simultaneously available to an animal subject or human participant, so that the subject or participant can respond on either schedule. For example, in a two-alternative forced choice task, a pigeon in a Skinner box is faced with two pecking keys; pecking responses can be made on either, and food reinforcement might follow a peck on either. The schedules of reinforcement arranged for pecks on the two keys can be different. They may be independent, or they may be linked so that behavior on one key affects the likelihood of reinforcement on the other.
It is not necessary for responses on the two schedules to be physically distinct. In an alternate way of arranging concurrent schedules, introduced by Findley in 1958, both schedules are arranged on a single key or other response device, and the subject can respond on a second key to change between the schedules. In such a "Findley concurrent" procedure, a stimulus signals which schedule is in effect.
Concurrent schedules often induce rapid alternation between the keys. To prevent this, a "changeover delay" is commonly introduced: each schedule is inactivated for a brief period after the subject switches to it.
When both the concurrent schedules are variable intervals, a quantitative relationship known as the matching law is found between relative response rates in the two schedules and the relative reinforcement rates they deliver; this was first observed by R.J. Herrnstein in 1961. Matching law is a rule for instrumental behavior which states that the relative rate of responding on a particular response alternative equals the relative rate of reinforcement for that response. Animals and humans have a tendency to prefer choice in schedules.

Shaping

Shaping is reinforcement of successive approximations to a desired instrumental response. In training a rat to press a lever, for example, simply turning toward the lever is reinforced at first. Then, only turning and stepping toward it is reinforced. The outcomes of one set of behaviours starts the shaping process for the next set of behaviours, and the outcomes of that set prepares the shaping process for the next set, and so on. As training progresses, the response reinforced becomes progressively more like the desired behavior; each subsequent behaviour becomes a closer approximation of the final behaviour.

Chaining

Chaining involves linking discrete behaviors together in a series, such that each result of each behavior is both the reinforcement for the previous behavior, and the stimuli for the next behavior. There are many ways to teach chaining, such as forward chaining, backwards chaining and total task chaining. An example is opening a locked door. First the key is inserted, then turned, then the door opened.
Forward chaining would teach the subject first to insert the key. Once that task is mastered, they are told to insert the key, and taught to turn it. Once that task is mastered, they are told to perform the first two, then taught to open the door. Backwards chaining would involve the teacher first inserting and turning the key, and the subject then being taught to open the door. Once that is learned, the teacher inserts the key, and the subject is taught to turn it, then opens the door as the next step. Finally, the subject is taught to insert the key, and they turn and open the door. Once the first step is mastered, the entire task has been taught. Total task chaining would involve teaching the entire task as a single series, prompting through all steps. Prompts are faded at each step as they are mastered.

Persuasive communication and the reinforcement theory

;Persuasive communication
;Informal persuasion
;Formal persuasion
;Process of persuasion
Persuasion is a form of human interaction. It takes place when one individual expects some particular response from one or more other individuals and deliberately sets out to secure the response through the use of communication. The communicator must realize that different groups have different values.
In instrumental learning situations, which involve operant behavior, the persuasive communicator will present his message and then wait for the receiver to make a correct response. As soon as the receiver makes the response, the communicator will attempt to fix the response by some appropriate reward or reinforcement.
In conditional learning situations, where there is respondent behavior, the communicator presents his message so as to elicit the response he wants from the receiver, and the stimulus that originally served to elicit the response then becomes the reinforcing or rewarding element in conditioning.

Mathematical models

A lot of work has been done in building a mathematical model of reinforcement. This model is known as MPR, short for mathematical principles of reinforcement. Peter Killeen has made key discoveries in the field with his research on pigeons.

Criticisms

The standard definition of behavioral reinforcement has been criticized as circular, since it appears to argue that response strength is increased by reinforcement, and defines reinforcement as something that increases response strength. However, the correct usage of reinforcement is that something is a reinforcer because of its effect on behavior, and not the other way around. It becomes circular if one says that a particular stimulus strengthens behavior because it is a reinforcer, and does not explain why a stimulus is producing that effect on the behavior. Other definitions have been proposed, such as F.D. Sheffield's "consummatory behavior contingent on a response", but these are not broadly used in psychology.
Increasingly understanding of the role reinforcers play is moving away from a "strengthening" effect to a "signalling" effect. That is, the view that reinforcers increase responding because they signal the behaviours that a likely to result in reinforcement. While in most practical applications, the effect of any given reinforcer will be the same regardless of whether the reinforcer is signalling or strengthening, this approach helps to explain a number of behavioural phenomenon including patterns of responding on intermittent reinforcement schedules and the differential outcomes effect.

History of the terms

In the 1920s Russian physiologist Ivan Pavlov may have been the first to use the word reinforcement with respect to behavior, but he used its approximate Russian cognate sparingly, and even then it referred to strengthening an already-learned but weakening response. He did not use it, as it is today, for selecting and strengthening new behaviors. Pavlov's introduction of the word extinction approximates today's psychological use.
In popular use, positive reinforcement is often used as a synonym for reward, with people thus being "reinforced", but this is contrary to the term's consistent technical usage, as it is a dimension of behavior, and not the person, which is strengthened. Negative reinforcement is often used by laypeople and even social scientists outside psychology as a synonym for punishment. This is contrary to modern technical use, but it was B.F. Skinner who first used it this way in his 1938 book. By 1953, however, he followed others in thus employing the word punishment, and he re-cast negative reinforcement for the removal of aversive stimuli.
There are some within the field of behavior analysis who have suggested that the terms "positive" and "negative" constitute an unnecessary distinction in discussing reinforcement as it is often unclear whether stimuli are being removed or presented. For example, Iwata poses the question: "... is a change in temperature more accurately characterized by the presentation of cold or the removal of heat ?" Thus, reinforcement could be conceptualized as a pre-change condition replaced by a post-change condition that reinforces the behavior that followed the change in stimulus conditions.

Applications

Reinforcement and punishment are ubiquitous in human social interactions, and a great many applications of operant principles have been suggested and implemented. Following are a few examples.

Addiction and dependence

Positive and negative reinforcement play central roles in the development and maintenance of addiction and drug dependence. An addictive drug is intrinsically rewarding; that is, it functions as [|a primary positive reinforcer] of drug use. The brain's reward system assigns it incentive salience, so as an addiction develops, deprivation of the drug leads to craving. In addition, stimuli associated with drug use – e.g., the sight of a syringe, and the location of use – become associated with the intense reinforcement induced by the drug. These previously neutral stimuli acquire several properties: their appearance can induce craving, and they can become [|conditioned positive reinforcers] of continued use. Thus, if an addicted individual encounters one of these drug cues, a craving for the associated drug may reappear. For example, anti-drug agencies previously used posters with images of drug paraphernalia as an attempt to show the dangers of drug use. However, such posters are no longer used because of the effects of incentive salience in causing relapse upon sight of the stimuli illustrated in the posters.
In drug dependent individuals, negative reinforcement occurs when a drug is self-administered in order to alleviate or "escape" the symptoms of physical dependence and/or psychological dependence that arise during the state of drug withdrawal.

Animal training

Animal trainers and pet owners were applying the principles and practices of operant conditioning long before these ideas were named and studied, and animal training still provides one of the clearest and most convincing examples of operant control. Of the concepts and procedures described in this article, a few of the most salient are: availability of immediate reinforcement ; contingency, assuring that reinforcement follows the desired behavior and not something else; the use of secondary reinforcement, as in sounding a clicker immediately after a desired response; shaping, as in gradually getting a dog to jump higher and higher; intermittent reinforcement, reducing the frequency of those yummies to induce persistent behavior without satiation; chaining, where a complex behavior is gradually put together.

Child behaviour – parent management training

Providing positive reinforcement for appropriate child behaviors is a major focus of parent management training. Typically, parents learn to reward appropriate behavior through social rewards as well as concrete rewards. In addition, parents learn to select simple behaviors as an initial focus and reward each of the small steps that their child achieves towards reaching a larger goal. They may also use indirect rewards such through progress charts. Providing positive reinforcement in the classroom can be beneficial to student success. When applying positive reinforcement to students, it's crucial to make it individualized to that student's needs. This way, the student understands why they are receiving the praise, they can accept it, and eventually learn to continue the action that was earned by positive reinforcement. For example, using rewards or extra recess time might apply to some students more, whereas others might accept the enforcement by receiving stickers or check marks indicating praise.

Economics

Both psychologists and economists have become interested in applying operant concepts and findings to the behavior of humans in the marketplace. An example
is the analysis of consumer demand, as indexed by the amount of a commodity that is purchased. In economics, the degree to which price influences consumption is called "the price elasticity of demand." Certain commodities are more elastic than others; for example, a change in price of certain foods may have a large effect on the amount bought, while gasoline and other essentials may be less affected by price changes. In terms of operant analysis, such effects may be interpreted in terms of motivations of consumers and the relative value of the commodities as reinforcers.

Gambling – variable ratio scheduling

As stated earlier in this article, a variable ratio schedule yields reinforcement after the emission of an unpredictable number of responses. This schedule typically generates rapid, persistent responding. Slot machines pay off on a variable ratio schedule, and they produce just this sort of persistent lever-pulling behavior in gamblers. Because the machines are programmed to pay out less money than they take in, the persistent slot-machine user invariably loses in the long run. Slots machines, and thus variable ratio reinforcement, have often been blamed as a factor underlying gambling addiction.

Nudge theory

Nudge theory is a concept in behavioural science, political theory and economics which argues that positive reinforcement and indirect suggestions to try to achieve non-forced compliance can influence the motives, incentives and decision making of groups and individuals, at least as effectively – if not more effectively – than direct instruction, legislation, or enforcement.

Praise

The concept of praise as a means of behavioral reinforcement in humans is rooted in B.F. Skinner's model of operant conditioning. Through this lens, praise has been viewed as a means of positive reinforcement, wherein an observed behavior is made more likely to occur by contingently praising said behavior. Hundreds of studies have demonstrated the effectiveness of praise in promoting positive behaviors, notably in the study of teacher and parent use of praise on child in promoting improved behavior and academic performance, but also in the study of work performance. Praise has also been demonstrated to reinforce positive behaviors in non-praised adjacent individuals through vicarious reinforcement. Praise may be more or less effective in changing behavior depending on its form, content and delivery. In order for praise to effect positive behavior change, it must be contingent on the positive behavior, must specify the particulars of the behavior that is to be reinforced, and must be delivered sincerely and credibly.
Acknowledging the effect of praise as a positive reinforcement strategy, numerous behavioral and cognitive behavioral interventions have incorporated the use of praise in their protocols. The strategic use of praise is recognized as an evidence-based practice in both classroom management and parenting training interventions, though praise is often subsumed in intervention research into a larger category of positive reinforcement, which includes strategies such as strategic attention and behavioral rewards.

Psychological manipulation

Braiker identified the following ways that manipulators control their victims:
Traumatic bonding occurs as the result of ongoing cycles of abuse in which the intermittent reinforcement of reward and punishment creates powerful emotional bonds that are resistant to change.
The other source indicated that
'The necessary conditions for traumatic bonding are that one person must dominate the other and that the level of abuse chronically spikes and then subsides. The relationship is characterized by periods of permissive, compassionate, and even affectionate behavior from the dominant person, punctuated by intermittent episodes of intense abuse. To maintain the upper hand, the victimizer manipulates the behavior of the victim and limits the victim's options so as to perpetuate the power imbalance. Any threat to the balance of dominance and submission may be met with an escalating cycle of punishment ranging from seething intimidation to intensely violent outbursts. The victimizer also isolates the victim from other sources of support, which reduces the likelihood of detection and intervention, impairs the victim's ability to receive countervailing self-referent feedback, and strengthens the sense of unilateral dependency ... The traumatic effects of these abusive relationships may include the impairment of the victim's capacity for accurate self-appraisal, leading to a sense of personal inadequacy and a subordinate sense of dependence upon the dominating person. Victims also may encounter a variety of unpleasant social and legal consequences of their emotional and behavioral affiliation with someone who perpetrated aggressive acts, even if they themselves were the recipients of the aggression.

Video games

Most video games are designed around some type of compulsion loop, adding a type of positive reinforcement through a variable rate schedule to keep the player playing the game, though this can also lead to video game addiction.
As part of a trend in the monetization of video games in the 2010s, some games offered "loot boxes" as rewards or purchasable by real-world funds that offered a random selection of in-game items, distributed by rarity. The practice has been tied to the same methods that slot machines and other gambling devices dole out rewards, as it follows a variable rate schedule. While the general perception that loot boxes are a form of gambling, the practice is only classified as such in a few countries as gambling and otherwise legal. However, methods to use those items as virtual currency for online gambling or trading for real-world money has created a skin gambling market that is under legal evaluation.

Workplace culture of fear

Ashforth discussed potentially destructive sides of leadership and identified what he referred to as petty tyrants: leaders who exercise a tyrannical style of management, resulting in a climate of fear in the workplace. Partial or intermittent negative reinforcement can create an effective climate of fear and doubt. When employees get the sense that bullies are tolerated, a climate of fear may be the result.
Individual differences in sensitivity to reward, punishment, and motivation have been studied under the premises of reinforcement sensitivity theory and have also been applied to workplace performance.