One of the most common robust measures of scale is the interquartile range, the difference between the 75th percentile and the 25th percentile of a sample; this is the 25% trimmed range, an example of an L-estimator. Other trimmed ranges, such as the interdecile range can also be used. Another familiar robust measure of scale is the medianabsolute deviation, the median of the absolute values of the differences between the data values and the overall median of the data set; for a Gaussian distribution, MAD is related to as .
Estimation
Robust measures of scale can be used as estimators of properties of the population, either for parameter estimation or as estimators of their own expected value. For example, robust estimators of scale are used to estimate the population variance or population standard deviation, generally by multiplying by a scale factor to make it an unbiasedconsistent estimator; see scale parameter: estimation. For example, dividing the IQR by 2 erf−1, makes it an unbiased, consistent estimator for the population standard deviation if the data follow a normal distribution. In other situations, it makes more sense to think of a robust measure of scale as an estimator of its own expected value, interpreted as an alternative to the population variance or standard deviation as a measure of scale. For example, the MAD of a sample from a standard Cauchy distribution is an estimator of the population MAD, which in this case is 1, whereas the population variance does not exist.
Efficiency
These robust estimators typically have inferior statistical efficiency compared to conventional estimators for data drawn from a distribution without outliers, but have superior efficiency for data drawn from a mixture distribution or from a heavy-tailed distribution, for which non-robust measures such as the standard deviation should not be used. For example, for data drawn from the normal distribution, the MAD is 37% as efficient as the sample standard deviation, while the Rousseeuw–Croux estimator Qn is 88% as efficient as the sample standard deviation.
Absolute pairwise differences
Rousseeuw and Croux propose alternatives to the MAD, motivated by two weaknesses of it:
it computes a symmetric statistic about a location estimate, thus not dealing with skewness.
They propose two alternative statistics based on pairwise differences: Sn and Qn, defined as: where is a constant depending on. These can be computed in O time and O space. Neither of these requires location estimation, as they are based only on differences between values. They are both more efficient than the MAD under a Gaussian distribution: Sn is 58% efficient, while Qn is 82% efficient. For a sample from a normal distribution, Sn is approximately unbiased for the population standard deviation even down to very modest sample sizes. For a large sample from a normal distribution, 2.219144465985075864722Qn is approximately unbiased for the population standard deviation. For small or moderate samples, the expected value of Qn under a normal distribution depends markedly on the sample size, so finite-sample correction factors are used to calibrate the scale of Qn.
The biweight midvariance
Like Sn and Qn, the biweight midvariance aims to be robust without sacrificing too much efficiency. It is defined as where I is the indicator function, Q is the sample median of the Xi, and Its square root is a robust estimator of scale, since data points are downweighted as their distance from the median increases, with points more than 9 MAD units from the median having no influence at all.
Extensions
propose a robust depth-based estimator for location and scale simultaneously.