STR analysis is a tool in forensic analysis that evaluates specific STR regions found on nuclear DNA. The variable nature of the STR regions that are analyzed for forensic testing intensifies the discrimination between one DNA profile and another. Scientific tools such as FBI approved STRmix incorporate this research technique. Forensic science takes advantage of the population's variability in STR lengths, enabling scientists to distinguish one DNA sample from another. The system of DNA profiling used today is based on PCR and uses simple sequences or short tandem repeats. This method uses highly polymorphic regions that have short repeated sequences of DNA. Because unrelated people almost certainly have different numbers of repeat units, STRs can be used to discriminate between unrelated individuals. These STR loci are targeted with sequence-specific primers and amplified using PCR. The DNA fragments that result are then separated and detected using electrophoresis. There are two common methods of separation and detection, capillary electrophoresis and gel electrophoresis. Each STR is polymorphic, but the number of alleles is very small. Typically each STR allele will be shared by around 5 - 20% of individuals. The power of STR analysis comes from looking at multiple STR loci simultaneously. The pattern of alleles can identify an individual quite accurately. Thus STR analysis provides an excellent identification tool. The more STR regions that are tested in an individual the more discriminating the test becomes. From country to country, different STR-based DNA-profiling systems are in use. In North America, systems that amplify the CODIS 13 core loci are almost universal, whereas in the United Kingdom the DNA-17 17 loci system is in use. Whichever system is used, many of the STR regions used are the same. These DNA-profiling systems are based on multiplex reactions, whereby many STR regions will be tested at the same time. The true power of STR analysis is in its statistical power of discrimination. Because the 13 loci that are currently used for discrimination in CODIS are independently assorted, the product rule for probabilities can be applied. This means that, if someone has the DNA type of ABC, where the three loci were independent, we can say that the probability of having that DNA type is the probability of having type A times the probability of having type B times the probability of having type C. This has resulted in the ability to generate match probabilities of 1 in a quintillion or more. However, DNA database searches showed much more frequent than expected false DNA profile matches. Moreover, since there are about 12 million monozygotic twins on Earth, the theoretical probability is not accurate. In practice, the risk of contaminated-matching is much greater than matching a distant relative, such as contamination of a sample from nearby objects, or from left-over cells transferred from a prior test. The risk is greater for matching the most common person in the samples: Everything collected from, or in contact with, a victim is a major source of contamination for any other samples brought into a lab. For that reason, multiple control-samples are typically tested in order to ensure that they stayed clean, when prepared during the same period as the actual test samples. Unexpected matches in several control-samples indicates a high probability of contamination for the actual test samples. In a relationship test, the full DNA profiles should differ, to prove that a person was not matched as being related to their own DNA in another sample.