Saliva


Saliva is an extracellular fluid produced and secreted by salivary glands in the mouth. In humans, saliva is 99.5% water plus electrolytes, mucus, white blood cells, epithelial cells, enzymes, antimicrobial agents such as secretory IgA, and lysozymes.
The enzymes found in saliva are essential in beginning the process of digestion of dietary starches and fats. These enzymes also play a role in breaking down food particles entrapped within dental crevices, thus protecting teeth from bacterial decay. Saliva also performs a lubricating function, wetting food and permitting the initiation of swallowing, and protecting the oral mucosa from drying out.
Various animal species have special uses for saliva that go beyond predigestion. Some swifts use their gummy saliva to build nests. Aerodramus nests form the basis of bird's nest soup.
Cobras, vipers, and certain other members of the venom clade hunt with venomous saliva injected by fangs. Some caterpillars produce silk fiber from silk proteins stored in modified salivary glands.

Composition

Produced in salivary glands, human saliva comprises 99.5% water, but also contains many important substances, including electrolytes, mucus, antibacterial compounds and various enzymes.
There is much debate about the amount of saliva that is produced in a healthy person. Production is estimated at 1500ml per day and is generally accepted that during sleep the amount drops significantly.
In humans, the submandibular gland contributes around 70–75% of secretion, while the parotid gland secretes about 20–25% and small amounts are secreted from the other salivary glands.

Functions

Saliva contributes to the digestion of food and to the maintenance of oral hygiene. Without normal salivary function the frequency of dental caries, gum disease, and other oral problems increases significantly.

Lubricant

Saliva coats the oral mucosa mechanically protecting it from trauma during eating, swallowing, and speaking. Mouth soreness is very common in people with reduced saliva and food sticks to the inside of the mouth.

Digestion

The digestive functions of saliva include moistening food and helping to create a food bolus. The lubricative function of saliva allows the food bolus to be passed easily from the mouth into the esophagus. Saliva contains the enzyme amylase, also called ptyalin, which is capable of breaking down starch into simpler sugars such as maltose and dextrin that can be further broken down in the small intestine. About 30% of starch digestion takes place in the mouth cavity. Salivary glands also secrete salivary lipase to begin fat digestion. Salivary lipase plays a large role in fat digestion in newborn infants as their pancreatic lipase still needs some time to develop.

Role in taste

Saliva is very important in the sense of taste. It is the liquid medium in which chemicals are carried to taste receptor cells. Persons with little saliva often complain of dysgeusia. A rare condition identified to affect taste is that of , or excessive amounts of sodium in saliva that is not caused by any other condition, causing everything to taste 'salty'.

Other

The production of saliva is stimulated both by the sympathetic nervous system and the parasympathetic.
The saliva stimulated by sympathetic innervation is thicker, and saliva stimulated parasympathetically is more fluid-like.
Sympathetic stimulation of saliva is to facilitate respiration, whereas parasympathetic stimulation is to facilitate digestion.
Parasympathetic stimulation leads to acetylcholine release onto the salivary acinar cells. ACh binds to muscarinic receptors, specifically M3, and causes an increased intracellular calcium ion concentration. Increased calcium causes vesicles within the cells to fuse with the apical cell membrane leading to secretion. ACh also causes the salivary gland to release kallikrein, an enzyme that converts kininogen to lysyl-bradykinin. Lysyl-bradykinin acts upon blood vessels and capillaries of the salivary gland to generate vasodilation and increased capillary permeability, respectively. The resulting increased blood flow to the acini allows the production of more saliva. In addition, Substance P can bind to Tachykinin NK-1 receptors leading to increased intracellular calcium concentrations and subsequently increased saliva secretion. Lastly, both parasympathetic and sympathetic nervous stimulation can lead to myoepithelium contraction which causes the expulsion of secretions from the secretory acinus into the ducts and eventually to the oral cavity.
Sympathetic stimulation results in the release of norepinephrine. Norepinephrine binding to α-adrenergic receptors will cause an increase in intracellular calcium levels leading to more fluid vs. protein secretion. If norepinephrine binds β-adrenergic receptors, it will result in more protein or enzyme secretion vs. fluid secretion. Stimulation by norepinephrine initially decreases blood flow to the salivary glands due to constriction of blood vessels but this effect is overtaken by vasodilation caused by various local vasodilators.
Saliva production may also be pharmacologically stimulated by the so-called sialagogues. It can also be suppressed by the so-called antisialagogues.

Behaviour

Spitting

is the act of forcibly ejecting saliva or other substances from the mouth. In many parts of the world, it is considered rude and a social taboo, and has even been outlawed in many countries. In Western countries, for example, it has often been outlawed for reasons of public decency and attempting to reduce the spread of disease; however, these laws are often not strictly enforced. In Singapore, the fine for spitting may be as high as SGD$2,000 for multiple offenses, and one can even be arrested. In some other parts of the world, such as in China, expectoration is more socially acceptable, and spittoons are still a common appearance in some cultures. Some animals, even humans in some cases, use spitting as an automatic defensive maneuver. Camels are well known for doing this, though most domestic camels are trained not to.
Because saliva can contain large amounts of virus copies in infected individuals, spitting in public places can pose a health hazard to the public.

Glue to construct bird nests

Many birds in the swift family, Apodidae, produce a viscous saliva during nesting season to glue together materials to construct a nest. Two species of swifts in the genus Aerodramus build their nests using only their saliva, the base for bird's nest soup.

Wound licking

A common belief is that saliva contained in the mouth has natural disinfectants, which leads people to believe it is beneficial to "lick their wounds". Researchers at the University of Florida at Gainesville have discovered a protein called nerve growth factor in the saliva of mice. Wounds doused with NGF healed twice as fast as untreated and unlicked wounds; therefore, saliva can help to heal wounds in some species. NGF has not been found in human saliva; however, researchers find human saliva contains such antibacterial agents as secretory mucin, IgA, lactoferrin, lysozyme and peroxidase. It has not been shown that human licking of wounds disinfects them, but licking is likely to help clean the wound by removing larger contaminants such as dirt and may help to directly remove infective bodies by brushing them away. Therefore, licking would be a way of wiping off pathogens, useful if clean water is not available to the animal or person.

Classical conditioning

In Pavlov's experiment, dogs were conditioned to salivate in response to a ringing bell, this stimulus is associated with a meal or hunger. Salivary secretion is also associated with nausea. Saliva is usually formed in the mouth through an act called, which can be voluntary or involuntary.

Making alcoholic beverages

Some old cultures chewed grains to produce alcoholic beverages, such as chicha, kasiri or sake.

Substitutes

A number of commercially available saliva substitutes exist.