The following proof is attributed to Julius König. Assume without loss of generality that A and B are disjoint. For any a in A or b in B we can form a unique two-sided sequence of elements that are alternately in A and B, by repeatedly applying and to go from A to B and and to go from B to A. For any particular a, this sequence may terminate to the left or not, at a point where or is not defined. By the fact that and are injective functions, each a in A and b in B is in exactly one such sequence to within identity: if an element occurs in two sequences, all elements to the left and to the right must be the same in both, by the definition of the sequences. Therefore, the sequences form a partition of the union of A and B. Hence it suffices to produce a bijection between the elements of A and B in each of the sequences separately, as follows: Call a sequence an A-stopper if it stops at an element ofA, or a B-stopper if it stops at an element of B. Otherwise, call it doubly infinite if all the elements are distinct or cyclic if it repeats. See the picture for examples.
For an A-stopper, the function ' is a bijection between its elements in A and its elements in B.
For a B-stopper, the function ' is a bijection between its elements in B and its elements in A.
For a doubly infinite sequence or a cyclic sequence, either ' or ' will do.
History
The traditional name "Schröder–Bernstein" is based on two proofs published independently in 1898. Cantor is often added because he first stated the theorem in 1887, while Schröder's name is often omitted because his proof turned out to be flawed while the name of Richard Dedekind, who first proved it, is not connected with the theorem. According to Bernstein, Cantor had suggested the name equivalence theorem.
1887Cantor publishes the theorem, however without proof.
1887 On July 11, Dedekind proves the theorem but neither publishes his proof nor tells Cantor about it. Ernst Zermelo discovered Dedekind's proof and in 1908 he publishes his own proof based on the chain theory from Dedekind's paper Was sind und was sollen die Zahlen?
1895Cantor states the theorem in his first paper on set theory and transfinite numbers. He obtains it as an easy consequence of the linear order of cardinal numbers. However, he could not prove the latter theorem, which is shown in 1915 to be equivalent to the axiom of choice by Friedrich Moritz Hartogs.
1896Schröder announces a proof.
1897Bernstein, a 19 years old student in Cantor's Seminar, presents his proof.
1897 Almost simultaneously, but independently, Schröder finds a proof.
1897 After a visit by Bernstein, Dedekind independently proves the theorem a second time.
1898Bernstein's proof is published by Émile Borel in his book on functions. In the same year, the proof also appears in Bernstein's dissertation.
1898Schröder publishes his proof which, however, is shown to be faulty by Alwin Reinhold Korselt in 1902,,, but Korselt's paper is published only in 1911.
Both proofs of Dedekind are based on his famous 1888 memoir Was sind und was sollen die Zahlen? and derive it as a corollary of a proposition equivalent to statement C in Cantor's paper, which reads A ⊆ B ⊆ C and |A| = |C| implies |A| = |B| = |C|. Cantor observed this property as early as 1882/83 during his studies in set theory and transfinite numbers and was therefore relying on the Axiom of Choice.
Prerequisites
The 1895 proof by Cantor relied, in effect, on the axiom of choice by inferring the result as a corollary of the well-ordering theorem. However, König's proof given [|above] shows that the result can also be proved without using the axiom of choice. On the other hand, König's proof uses the principle of excluded middle, to do the analysis into cases, so this proof does not work inconstructive set theory. Even more, no proof at all can exist from constructive set theory alone, since the Schröder–Bernstein theorem implies the principle of excluded middle. Therefore, intuitionists do not accept the theorem. There is also a proof which uses Tarski's fixed point theorem.