Schwarzschild metric
In Einstein's theory of general relativity, the Schwarzschild metric is the solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. It was found by Karl Schwarzschild in 1916, and around the same time independently by Johannes Droste, who published his much more complete and modern-looking discussion only four months after Schwarzschild.
According to Birkhoff's theorem, the Schwarzschild metric is the most general spherically symmetric vacuum solution of the Einstein field equations. A Schwarzschild black hole or static black hole is a black hole that has neither electric charge nor angular momentum. A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass.
The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon, which is situated at the Schwarzschild radius, often called the radius of a black hole. The boundary is not a physical surface, and if a person fell through the event horizon, they would not notice any physical surface at that position; it is a mathematical surface which is significant in determining the black hole's properties. Any non-rotating and non-charged mass that is smaller than its Schwarzschild radius forms a black hole. The solution of the Einstein field equations is valid for any mass, so in principle a Schwarzschild black hole of any mass could exist if conditions became sufficiently favorable to allow for its formation.
The Schwarzschild metric
The Schwarzschild metric is a spherically symmetric Lorentzian metric defined onwhere is 3 dimensional Euclidean space, and is the two sphere. The rotation group acts on the or factor as rotations around the center, while leaving the first factor unchanged. The Schwarzschild metric is a solution of Einstein's field equations in empty space, meaning that it is valid only outside the gravitating body. That is, for a spherical body of radius the solution is valid for. To describe the gravitational field both inside and outside the gravitating body the Schwarzschild solution must be matched with some suitable interior solution at, such as the interior Schwarzschild metric.
In Schwarzschild coordinates the Schwarzschild metric has the form
where is the metric on the two sphere, i.e.. Furthermore,
- is positive for time like curves, and is the proper time,
- is the speed of light,
- is the time coordinate,
- is the radial coordinate,
- is a point on the two sphere,
- is the colatitude of defined after arbitrarily choosing a z-axis,
- is the longitude of around the chosen z-axis, and
- is the Schwarzschild radius of the massive body, a scale factor which is related to its mass by, where is the gravitational constant.
The radial coordinate turns out to have physical significance as the "proper distance between two events that occur simultaneously relative to the radially moving geodesic clocks, the two events lying on the same radial coordinate line".
The Schwarzschild solution is analogous to a classical Newtonian theory of gravity that corresponds to the gravitational field around a point particle.
Even at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion.
History
The Schwarzschild solution is named in honour of Karl Schwarzschild, who found the exact solution in 1915 and published it in January 1916, a little more than a month after the publication of Einstein's theory of general relativity.It was the first exact solution of the Einstein field equations other than the trivial flat space solution. Schwarzschild died shortly after his paper was published, as a result of a disease he contracted while serving in the German army during World War I.
Johannes Droste in 1916
independently produced the same solution as Schwarzschild, using a simpler, more direct derivation.
In the early years of general relativity there was a lot of confusion about the nature of the singularities found in the Schwarzschild and other solutions of the Einstein field equations. In Schwarzschild's original paper, he put what we now call the event horizon at the origin of his coordinate system. In this paper he also introduced what is now known as the Schwarzschild radial coordinate, as an auxiliary variable. In his equations, Schwarzschild was using a different radial coordinate that was zero at the Schwarzschild radius.
A more complete analysis of the singularity structure was given by David Hilbert in the following year, identifying the singularities both at and. Although there was general consensus that the singularity at was a 'genuine' physical singularity, the nature of the singularity at remained unclear.
In 1921 Paul Painlevé and in 1922 Allvar Gullstrand independently produced a metric, a spherically symmetric solution of Einstein's equations, which we now know is coordinate transformation of the Schwarzschild metric, Gullstrand–Painlevé coordinates, in which there was no singularity at. They, however, did not recognize that their solutions were just coordinate transforms, and in fact used their solution to argue that Einstein's theory was wrong. In 1924 Arthur Eddington produced the first coordinate transformation that showed that the singularity at was a coordinate artifact, although he also seems to have been unaware of the significance of this discovery. Later, in 1932, Georges Lemaître gave a different coordinate transformation to the same effect and was the first to recognize that this implied that the singularity at was not physical. In 1939 Howard Robertson showed that a free falling observer descending in the Schwarzschild metric would cross the singularity in a finite amount of proper time even though this would take an infinite amount of time in terms of coordinate time.
In 1950, John Synge produced a paper that showed the maximal analytic extension of the Schwarzschild metric, again showing that the singularity at was a coordinate artifact and that it represented two horizons. A similar result was later rediscovered by George Szekeres, and independently Martin Kruskal. The new coordinates nowadays known as Kruskal-Szekeres coordinates were much simpler than Synge's but both provided a single set of coordinates that covered the entire spacetime. However, perhaps due to the obscurity of the journals in which the papers of Lemaître and Synge were published their conclusions went unnoticed, with many of the major players in the field including Einstein believing that the singularity at the Schwarzschild radius was physical.
Real progress was made in the 1960s when the more exact tools of differential geometry entered the field of general relativity, allowing more exact definitions of what it means for a Lorentzian manifold to be singular. This led to definitive identification of the singularity in the Schwarzschild metric as an event horizon.
Singularities and black holes
The Schwarzschild solution appears to have singularities at and ; some of the metric components "blow up" at these radii. Since the Schwarzschild metric is expected to be valid only for those radii larger than the radius of the gravitating body, there is no problem as long as. For ordinary stars and planets this is always the case. For example, the radius of the Sun is approximately, while its Schwarzschild radius is only.The singularity at divides the Schwarzschild coordinates in two disconnected patches. The exterior Schwarzschild solution with is the one that is related to the gravitational fields of stars and planets. The interior Schwarzschild solution with, which contains the singularity at, is completely separated from the outer patch by the singularity at. The Schwarzschild coordinates therefore give no physical connection between the two patches, which may be viewed as separate solutions. The singularity at is an illusion however; it is an instance of what is called a coordinate singularity. As the name implies, the singularity arises from a bad choice of coordinates or coordinate conditions. When changing to a different coordinate system the metric becomes regular at and can extend the external patch to values of smaller than. Using a different coordinate transformation one can then relate the extended external patch to the inner patch.
The case is different, however. If one asks that the solution be valid for all one runs into a true physical singularity, or gravitational singularity, at the origin. To see that this is a true singularity one must look at quantities that are independent of the choice of coordinates. One such important quantity is the Kretschmann invariant, which is given by
At the curvature becomes infinite, indicating the presence of a singularity. At this point the metric, and spacetime itself, is no longer well-defined. For a long time it was thought that such a solution was non-physical. However, a greater understanding of general relativity led to the realization that such singularities were a generic feature of the theory and not just an exotic special case.
The Schwarzschild solution, taken to be valid for all, is called a Schwarzschild black hole. It is a perfectly valid solution of the Einstein field equations, although it has rather bizarre properties. For the Schwarzschild radial coordinate becomes timelike and the time coordinate becomes spacelike. A curve at constant is no longer a possible worldline of a particle or observer, not even if a force is exerted to try to keep it there; this occurs because spacetime has been curved so much that the direction of cause and effect points into the singularity. The surface demarcates what is called the event horizon of the black hole. It represents the point past which light can no longer escape the gravitational field. Any physical object whose radius becomes less than or equal to the Schwarzschild radius has undergone gravitational collapse and become a black hole.
Alternative coordinates
The Schwarzschild solution can be expressed in a range of different choices of coordinates besides the Schwarzschild coordinates used above. Different choices tend to highlight different features of the solution. The table below shows some popular choices.Coordinates | Line element | Notes | Features |
Eddington–Finkelstein coordinates | regular at future horizon --past horizon is at v=- infinity | ||
Eddington–Finkelstein coordinates | regular at past horizon extends across past horizon. Future horizon at u = infinity | ||
Gullstrand–Painlevé coordinates | regular at horizon | ||
Isotropic coordinates | Valid only outside the event horizon: | isotropic lightcones on constant time slices | |
Kruskal–Szekeres coordinates | regular at horizon Maximally extends to full spacetime | ||
Lemaître coordinates | regular at future/past horizon | ||
Harmonic coordinates |
In table above, some shorthand has been introduced for brevity. The speed of light has been set to one. The notation
is used for the metric of a unit radius 2-dimensional sphere. Moreover, in each entry and denote alternative choices of radial and time coordinate for the particular coordinates. Note, the and/or may vary from entry to entry.
Flamm's paraboloid
The spatial curvature of the Schwarzschild solution for can be visualized as the graphic shows. Consider a constant time equatorial slice through the Schwarzschild solution and let the position of a particle moving in this plane be described with the remaining Schwarzschild coordinates. Imagine now that there is an additional Euclidean dimension, which has no physical reality. Then replace the plane with a surface dimpled in the direction according to the equationThis surface has the property that distances measured within it match distances in the Schwarzschild metric, because with the definition of w above,
Thus, Flamm's paraboloid is useful for visualizing the spatial curvature of the Schwarzschild metric. It should not, however, be confused with a gravity well. No ordinary particle can have a worldline lying on the paraboloid, since all distances on it are spacelike. A tachyon could have a spacelike worldline that lies entirely on a single paraboloid. However, even in that case its geodesic path is not the trajectory one gets through a "rubber sheet" analogy of gravitational well: in particular, if the dimple is drawn pointing upward rather than downward, the tachyon's geodesic path still curves toward the central mass, not away. See the gravity well article for more information.
Flamm's paraboloid may be derived as follows. The Euclidean metric in the cylindrical coordinates is written
Letting the surface be described by the function, the Euclidean metric can be written as
Comparing this with the Schwarzschild metric in the equatorial plane at a fixed time
yields an integral expression for :
whose solution is Flamm's paraboloid.
Orbital motion
A particle orbiting in the Schwarzschild metric can have a stable circular orbit with. Circular orbits with between and are unstable, and no circular orbits exist for. The circular orbit of minimum radius corresponds to an orbital velocity approaching the speed of light. It is possible for a particle to have a constant value of between and, but only if some force acts to keep it there.Noncircular orbits, such as Mercury's, dwell longer at small radii than would be expected in Newtonian gravity. This can be seen as a less extreme version of the more dramatic case in which a particle passes through the event horizon and dwells inside it forever. Intermediate between the case of Mercury and the case of an object falling past the event horizon, there are exotic possibilities such as knife-edge orbits, in which the satellite can be made to execute an arbitrarily large number of nearly circular orbits, after which it flies back outward.
Symmetries
The group of isometries of the Schwarzschild metric is the subgroup of the ten-dimensional Poincaré group which takes the time axis to itself. It omits the spatial translations and boosts. It retains the time translations and rotations. Thus it has four dimensions. Like the Poincaré group, it has four connected components: the component of the identity; the time reversed component; the spatial inversion component; and the component which is both time reversed and spatially inverted.Curvatures
The Ricci curvature scalar and the Ricci curvature tensor are both zero. Non-zero components of the Riemann curvature tensor areComponents which are obtainable by the symmetries of the Riemann tensor are not displayed.
To understand the physical meaning of these quantities, it is useful to express the curvature tensor in an orthonormal basis. In an orthonormal basis of an observer the non-zero components in geometric units are
Again, components which are obtainable by the symmetries of the Riemann tensor are not displayed. These results are invariant to any Lorentz boost, thus the components do not change for non-static observers. The geodesic deviation equation shows that the tidal acceleration between two observers separated by is, so a body of length is stretched in the radial direction by an apparent acceleration and squeezed in the perpendicular directions by .