Security engineering


Security engineering is a specialized field of engineering that focuses on the security aspects in the design of systems that need to be able to deal robustly with possible sources of disruption, ranging from natural disasters to malicious acts. It is similar to other systems engineering activities in that its primary motivation is to support the delivery of engineering solutions that satisfy pre-defined functional and user requirements, but it has the added dimension of preventing misuse and malicious behavior. Those constraints and restrictions are often asserted as a security policy.
In one form or another, security engineering has existed as an informal field of study for several centuries. For example, the fields of locksmithing and security printing have been around for many years.
Recent catastrophic events, most notably 9/11, have made security engineering quickly become a rapidly-growing field. In fact, in a report completed in 2006, it was estimated that the global security industry was valued at US$150 billion.
Security engineering involves aspects of social science, psychology, and economics as well as physics, chemistry, mathematics, criminology architecture, and landscaping.
Some of the techniques used, such as fault tree analysis, are derived from safety engineering.
Other techniques such as cryptography were previously restricted to military applications. One of the pioneers of security engineering as a formal field of study is Ross Anderson.

Qualifications

No single qualification exists to become a security engineer.
However, an undergraduate and/or graduate degree, often in computer science, computer engineering, or physical protection focused degrees such as Security Science, in combination with practical work experience most qualifies an individual to succeed in the field. Other degree qualifications with a security focus exist. Multiple certifications, such as the Certified Information Systems Security Professional, or Certified Physical Security Professional are available that may demonstrate expertise in the field. Regardless of the qualification, the course must include a knowledge base to diagnose the security system drivers, security theory and principles including defense in depth, protection in depth, situational crime prevention and crime prevention through environmental design to set the protection strategy, and technical knowledge including physics and mathematics to design and commission the engineering treatment solution.
All this knowledge must be braced by professional attributes including strong communication skills and high levels of literacy for engineering report writing. Security engineering also goes by the label Security Science.

Related-fields

Technological advances, principally in the field of computers, have now allowed the creation of far more complex systems, with new and complex security problems. Because modern systems cut across many areas of human endeavor, security engineers not only need consider the mathematical and physical properties of systems; they also need to consider attacks on the people who use and form parts of those systems using social engineering attacks. Secure systems have to resist not only technical attacks, but also coercion, fraud, and deception by confidence tricksters.

Web applications

According to the Microsoft Developer Network the patterns and practices of security engineering consist of the following activities:
These activities are designed to help meet security objectives in the software life cycle.

Physical

Whatever the target, there are multiple ways of preventing penetration by unwanted or unauthorised persons. Methods include placing Jersey barriers, stairs or other sturdy obstacles outside tall or politically sensitive buildings to prevent car and truck bombings. Improving the method of visitor management and some new electronic locks take advantage of technologies such as fingerprint scanning, iris or retinal scanning, and voiceprint identification to authenticate users.

Articles and papers